Learn More
We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian(More)
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is(More)
Lesion studies have shown that the avian hippocampus plays a crucial role in homing pigeon (Columba livia) navigation. Using the expression of the immediate early gene protein ZENK in intact pigeons, the authors found regional variation in hippocampal activation as a consequence of homing and, necessarily, the behavior and internal states that accompany it.(More)
Many of the assumptions of homology on which the standard nomenclature for the cell groups and fiber tracts of avian brains have been based are in error, and as a result that terminology promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains. Recognizing this problem, a number of(More)
Many species of birds, including pigeons, possess demonstrable cognitive capacities, and some are capable of cognitive feats matching those of apes. Since mammalian cortex is laminar while the avian telencephalon is nucleated, it is natural to ask whether the brains of these two cognitively capable taxa, despite their apparent anatomical dissimilarities,(More)
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we(More)
Until recently, the exact location of the avian nucleus accumbens within the basal forebrain had not been well established (Reiner et al. [2004] J Comp Neurol 473:377-414). While a number of previous studies have shown afferents and efferents of the presumptive "nucleus accumbens," detailed and accurate connection patterns of this newly recognized area are(More)