Toru Nagasawa

Learn More
As the third-generation biocatalyst for industrial production of acrylamide, the superiority of Rhodococcus rhodochrous J1 nitrile hydratase was demonstrated in comparison with other acrylamide-producing bacteria. R. rhodochrous J1 enzyme is much more heat stable and more tolerant to a high concentration of acrylonitrile than Pseudomonas chlororaphis B23(More)
ε-Poly-l-lysine (ε-PL) is a homo-poly-amino acid characterized by the peptide bond between the carboxyl and ε-amino groups of l-lysine. ε-PL shows a wide range of antimicrobial activity and is stable at high temperatures and under both acidic and alkaline conditions. The mechanism of the inhibitory effect of ε-PL on microbial growth is the electrostatic(More)
Microorganisms aerobically degrading quinolinic acid, lutidinic acid or isocinchomeronic acid were isolated and the microbial regioselective hydroxylation of these pyridine dicarboxylic acids was studied. Alcaligenes sp. UK21 cells converted quinolinic acid into 6-hydroxypicolinic acid, suggesting the involvement of two enzyme reactions catalyzing(More)
We sought the optimum conditions for production of nitrile hydratase by Rhodococcus rhodochrous J1. The addiiion of both cobalt ions and an aliphatic nitrile or amide as an inducer was indispensable for the appearance of nitrile hydratase activity in R. rhodochrous J1 cells. Crotonamide was an efficient inducer and, moreover, urea was found to be the most(More)
An ε-poly-L-lysine-degrading enzyme of an ε-poly-L-lysine-producing strain of Streptomyces albulus was purified and characterized. The enzyme was tightly bound to the cell membrane. After solubilization with NaSCN, the enzyme was purified to homogeneity by phenyl-Sepharose CL-4B column chromatography. The subunit molecular mass of the purified enzyme was 54(More)
Larval and juvenile stages of kurosoi,Sebastes schlegeli, are described and illustrated from wild specimens. Some ecological aspects of larvae and juveniles are also described. Notochord flexion occurred between 5.6–7.5 mm SL. Transformation occurred between 13–20 mm SL. Preflexion and flexion larvae ofS. schlegeli can be distinguished from similar larvae(More)
We found the occurrence of 4-hydroxybenzoate decarboxylase in Enterobacter cloacae P240, isolated from soils under anaerobic conditions, and purified the enzyme to homogeneity. The purified enzyme was a homohexamer of identical 60 kDa subunits. The purified decarboxylase catalyzed the nonoxidative decarboxylation of 4-hydroxybenzoate without requiring any(More)
In the conversion of quinolinic acid to 6-hydroxypicolinic acid by whole cells of Alcaligenes sp. strain UK21, the enzyme reactions involved in the hydroxylation and decarboxylation of quinolinic acid were examined. Quinolinate dehydrogenase, which catalyzes the first step, the hydroxylation of quinolinic acid, was solubilized from a membrane fraction,(More)
We sought the optimum conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. The use of isovaleronitrile or isobutyronitrile as an inducer greatly enhanced benzonitrilase formation. When Rhodococcus rhodochrous J1 was cultivated at 28°C for 96 h in a medium consisting of 0.1 ml of isovaleronitrile, 0.5 g of polypeptone, 0.3 g of malt(More)
The ability to produce vanillin and/or vanillic acid from isoeugenol was screened using resting cells of various bacteria. The vanillin- and/or vanillic-acid-producing activities were observed in strains belonging to the genera Achromobacter, Aeromonas, Agrobacerium, Alcaligenes, Arthrobacter, Bacillus, Micrococcus, Pseudomonas, Rhodobacter, and(More)