Learn More
We report ultrasensitive Ca(2+) indicators, yellow cameleon-Nano (YC-Nano), developed by engineering the Ca(2+)-sensing domain of a genetically encoded Ca(2+) indicator, YC2.60 or YC3.60. Their high Ca(2+) affinities (K(d) = 15-140 nM) and large signal change (1,450%) enabled detection of subtle Ca(2+) transients associated with intercellular signaling(More)
We developed genetically encoded fluorescent inositol 1,4,5-trisphosphate (IP3) sensors that do not severely interfere with intracellular Ca2+ dynamics and used them to monitor the spatiotemporal dynamics of both cytosolic IP3 and Ca2+ in single HeLa cells after stimulation of exogenously expressed metabotropic glutamate receptor 5a or endogenous histamine(More)
Activity-dependent synaptic plasticity has been thought to be a cellular basis of memory and learning. The late phase of long-term potentiation (L-LTP), distinct from the early phase, lasts for up to 6 h and requires de novo synthesis of mRNA and protein. Many LTP-related genes are enhanced in the hippocampus during pentyrenetetrazol (PTZ)- and kainate(More)
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) is an intracellular Ca(2+) release channel, and its opening is controlled by IP(3) and Ca(2+). A single IP(3) binding site and multiple Ca(2+) binding sites exist on single subunits, but the precise nature of the interplay between these two ligands in regulating biphasic dependence of channel(More)
We identified a 45-kDa protein by 2D electrophoresis that was enhanced following pentylenetetrazol (PTZ)-mediated seizures. Mass-spectrography of this protein revealed the beta subunit of Ca2+/calmodulin-dependent protein kinase II (CaMKIIbeta), although no evidence for increase in bulk CaMKIIbeta transcripts was obtained. Physicochemical parameters of the(More)
Inositol 1,4,5-trisphosphate (IP(3)) is generally viewed as a global messenger that increases cytosolic calcium ion (Ca(2+)) concentration. However, the spatiotemporal dynamics of IP(3) and the functional significance of localized IP(3) production in cell polarity remain largely unknown. Here, we demonstrate the critical role of spatially restricted IP(3)(More)
Metabotropic glutamate receptor (mGluR)-dependent calcium ion (Ca²+) signaling in astrocytic processes regulates synaptic transmission and local blood flow essential for brain function. However, because of difficulties in imaging astrocytic processes, the subcellular spatial organization of mGluR-dependent Ca²+ signaling is not well characterized and its(More)
Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in(More)
Various genes for transcription factors are induced in neurons involving long-lasting synaptic plasticity that is accompanied by de novo protein synthesis. In this study, we analyzed the gene expression of NeuroD-related factor (NDRF/neuroD2), a neural basic helix-loop-helix transcription factor, in the mouse hippocampus following pentylenetetrazol(More)
Efficient gene editing is a critical tool for investigating molecular mechanisms of cellular processes and engineering organisms for numerous purposes ranging from biotechnology to medicine. Recently developed RNA-guided CRISPR/Cas9 technology has been used for efficient gene editing in various organisms, but has not been tested in a model filamentous(More)