Learn More
PU.1, IKAROS, E2A, EBF, and PAX5 comprise a transcriptional network that orchestrates B-cell lineage specification, commitment, and differentiation. Here we identify interferon regulatory factor 8 (IRF8) as another component of this complex, and show that it also modulates lineage choice by hematopoietic stem cells (HSCs). IRF8 binds directly to an IRF8/Ets(More)
Dendritic cells (DCs) orchestrate immune responses according to their state of maturation. In response to infection, DCs differentiate into mature cells that initiate immune responses, while in the absence of infection, most of them remain in an immature form that induces tolerance to self Ags. Understanding what controls these opposing effects is an(More)
We generated a mouse line in which the src homology 2 domain-bearing protein tyrosine phosphatase (SHP)-2 binding site of gp130, tyrosine 759, was mutated to phenylalanine (gp130(F759/F759)). The gp130(F759/F759) mice developed rheumatoid arthritis (RA)-like joint disease. The disease was accompanied by autoantibody production and accumulated(More)
Tumor-associated inflammation can induce various molecules expressed from the tumors themselves or surrounding cells to create a microenvironment that potentially promotes cancer development. Inflammation, particularly chronic inflammation, is often linked to cancer development, even though its evolutionary role should impair nonself objects including(More)
The central nervous system (CNS) is considered an immune-privileged tissue protected by a specific vessel structure, the blood-brain barrier (BBB). Upon infection or traumatic injury in the CNS, the BBB is breached, and various immune cells are recruited to the affected area. In the case of autoimmune diseases in the CNS like multiple sclerosis (MS),(More)
KDEL receptors are responsible for retrotransporting endoplasmic reticulum (ER) chaperones from the Golgi complex to the ER. Here we describe a role for KDEL receptor 1 (KDELR1) that involves the regulation of integrated stress responses (ISR) in T cells. Designing and using an N-ethyl-N-nitrosourea (ENU)-mutant mouse line, T-Red (naïve T-cell reduced), we(More)
The central nervous system (CNS) is an immune-privileged environment protected by the blood-brain barrier (BBB), which consists of specific endothelial cells that are brought together by tight junctions and tight liner sheets formed by pericytes and astrocytic end-feet. Despite the BBB, various immune and tumor cells can infiltrate the CNS parenchyma, as(More)
The survival of naïve T cells is believed to require signals from TCR-pMHC interactions and cytokines such as IL-7. In contrast, signals that negatively impact naïve T cell survival are less understood. We conducted a forward genetic screening of mice and found a mutant mouse line with reduced number of naïve T cells (T-Red mice). T-Red mice have a point(More)
Although pain is a common symptom of various diseases and disorders, its contribution to disease pathogenesis is not well understood. Here we show using murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), that pain induces EAE relapse. Mechanistic analysis showed that pain induction activates a sensory-sympathetic(More)
The central nervous system (CNS) is an immune-privileged tissue due to a specialized blood vessel structure, the blood–brain barrier. Indeed, the blood–brain barrier tightly limits cell migrations into the CNS. However, several immune cells, including T cells, can be found there. It is hypothesized that these cells have both beneficial and detrimental roles(More)