Torsten Schaub

Learn More
We introduce a new approach to computing answer sets of logic programs, based on concepts from constraint processing (CSP) and satisfiability checking (SAT). The idea is to view inferences in answer set programming (ASP) as unit propagation on nogoods. This provides us with a uniform constraintbased framework for the different kinds of inferences in ASP. It(More)
We introduce an approach to computing answer sets of logic programs, based on concepts successfully applied in Satisfiability (SAT) checking. The idea is to view inferences in Answer Set Programming (ASP) as unit propagation on nogoods. This provides us with a uniform constraint-based framework capturing diverse inferences encountered in ASP solving.(More)
Answer Set Programming (ASP) is a declarative problem solving approach, combining a rich yet simple modeling language with high-performance solving capacities. ASP is particularly suited for modeling problems in the area of Knowledge Representation and Reasoning involving incomplete, inconsistent, and changing information. From a formal perspective, ASP(More)
We present a new approach to integrating Constraint Processing (CP) techniques into Answer Set Programming (ASP). Based on an alternative semantic approach, we develop an algorithmic framework for conflict-driven ASP solving that exploits CP solving capacities. A significant technical issue concerns the combination of conflict information from different(More)
We elaborate a uniform approach to computing answer sets of disjunctive logic programs based on state-of-theart Boolean constraint solving techniques. Starting from a constraint-based characterization of answer sets, we develop advanced solving algorithms, featuring backjumping and conflict-driven learning using the First-UIP scheme as well as sophisticated(More)
We introduce a methodology and framework for expressing general preference information in logic programming under the answer set semantics. An ordered logic program is an extended logic program in which rules are named by unique terms, and in which preferences among rules are given by a set of atoms of the form s t where s and t are names. An ordered logic(More)