Torsten H. Walther

Learn More
The twin-arginine translocase (Tat) provides protein export in bacteria and plant chloroplasts and is capable of transporting fully folded proteins across the membrane. We resolved the conformation and membrane alignment of the pore-forming subunit TatA(d) from Bacillus subtilis using solid-state NMR spectroscopy. The relevant structured part of the(More)
The twin-arginine-translocase (Tat) can transport proteins in their folded state across bacterial or thylakoid membranes. In Bacillus subtilis the Tat-machinery consists of only two integral (inner) membrane proteins, TatA and TatC. Multiple copies of TatA are supposed to form the transmembrane channel, but little structural data is available on this(More)
We propose a concept for the folding and self-assembly of the pore-forming TatA complex from the Twin-arginine translocase and of other membrane proteins based on electrostatic "charge zippers." Each subunit of TatA consists of a transmembrane segment, an amphiphilic helix (APH), and a C-terminal densely charged region (DCR). The sequence of charges in the(More)
Transmembrane helix-helix interactions mediate the folding and assembly of membrane proteins. Recognition motifs range from GxxxG and leucine zippers to polar side chains and salt bridges. Some canonical membrane proteins contain local charge clusters that are important for folding and function, and which have to be compatible with a stable insertion into(More)
The transmembrane protein TatA is the pore forming unit of the twin-arginine translocase (Tat), which has the unique ability of transporting folded proteins across the cell membrane. This ATP-independent protein export pathway is a recently discovered alternative to the general secretory (Sec) system of bacteria. To obtain insight in the translocation(More)
A mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the short-chain detergent n-dodecylphosphocholine (DPC) is introduced here as a new membrane-mimetic bicelle system for solid-state NMR structure analysis of membrane proteins in oriented samples. Magnetically aligned DMPC/DPC bicelles are stable over a range of concentrations, with an(More)
The twin arginine translocation (Tat) system can transport fully folded proteins, including their cofactors, across bacterial and thylakoid membranes. The Tat system of Bacillus subtilis that serves to export the phosphodiesterase (PhoD) consists of only two membrane proteins, TatA(d) and TatC(d). The larger component TatC(d) has a molecular weight of 28(More)
  • 1