Torgeir Flatmark

Learn More
We have defined, in the neuroendocrine cell line PC12, the catecholamine- and acetylcholine-storing organelles in the context of the biogenesis of secretory granules and synaptic-like microvesicles (SLMVs). SLMVs were found to originate directly from early endosomes. Both early endosomes and SLMVs exhibited uptake and storage of biosynthetic acetylcholine.(More)
The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory(More)
Chemoresistance represents a major problem in the treatment of many malignancies. Overcoming this obstacle will require improved understanding of the mechanisms responsible for this phenomenon. The progenitor cell marker NG2/melanoma proteoglycan (MPG) is aberrantly expressed by various tumors, but its role in cell death signaling and its potential as a(More)
Phenylalanine hydroxylase (PheOH) catalyzes the conversion of L-phenylalanine to L-tyrosine, the rate-limiting step in the oxidative degradation of phenylalanine. Mutations in the human PheOH gene cause phenylketonuria, a common autosomal recessive metabolic disorder that in untreated patients often results in varying degrees of mental retardation. We have(More)
Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA), the rate-limiting step in the biosynthesis of dopamine. This report describes a missense point mutation in the human TH (hTH) gene in a girl presenting parkinsonian symptoms in early infancy and a very low level of the dopamine metabolite homovanillic acid(More)
The 2.0 A crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals a fold similar to that of tyrosine hydroxylase. It provides the first structural view of where mutations occur and a rationale to explain molecular mechanisms of the enzymatic phenotypes in the autosomal recessive disorder phenylketoneuria.
Human tyrosine 3-monooxygenase (tyrosine hydroxylase) exists as four different isozymes (TH1-TH4), generated by alternative splicing of pre-mRNA. Recombinant TH1, TH2 and TH4 were expressed in high yield in Escherichia coli. The purified isozymes revealed high catalytic activity [when reconstituted with Fe(II)] and stability at neutral pH. The isozymes as(More)
The catecholamines are widely distributed in mammals and their levels and physiological functions are regulated at many sites. These include their release from neuroendocrine cells, the type and sensitivity of the multiple receptors in target cells, the efficacy of the reuptake system in the secretory cells, and the rates of catecholamine biosynthesis and(More)
Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA), the rate-limiting step in the biosynthesis of dopamine. Recently, we described a point mutation in hTH (Q381K) in a family of two siblings suffering from progressive L-DOPA-responsive dystonia (DRD), representing the first reported mutation in this gene.(More)
Phenylalanine hydroxylase catalyzes the stereospecific hydroxylation of L-phenylalanine, the committed step in the degradation of this amino acid. We have solved the crystal structure of the ternary complex (hPheOH-Fe(II).BH(4).THA) of the catalytically active Fe(II) form of a truncated form (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase(More)