Learn More
The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory(More)
Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA), the rate-limiting step in the biosynthesis of dopamine. This report describes a missense point mutation in the human TH (hTH) gene in a girl presenting parkinsonian symptoms in early infancy and a very low level of the dopamine metabolite homovanillic acid(More)
The 2.0 A crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals a fold similar to that of tyrosine hydroxylase. It provides the first structural view of where mutations occur and a rationale to explain molecular mechanisms of the enzymatic phenotypes in the autosomal recessive disorder phenylketoneuria.
Recombinant human phenylalanine hydroxylase (hPAH) was produced in high yields in Escherichia coli using the pET and pMAL expression vectors. In the pMAL system, hPAH was fused through the target sequences of the restriction protease factor Xa (IEGR) or enterokinase (D4K) to the C-terminal end of the highly expressed E. coli maltose-binding protein (MBP).(More)
Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA), the rate-limiting step in the biosynthesis of dopamine. Recently, we described a point mutation in hTH (Q381K) in a family of two siblings suffering from progressive L-DOPA-responsive dystonia (DRD), representing the first reported mutation in this gene.(More)
We have defined, in the neuroendocrine cell line PC12, the catecholamine- and acetylcholine-storing organelles in the context of the biogenesis of secretory granules and synaptic-like microvesicles (SLMVs). SLMVs were found to originate directly from early endosomes. Both early endosomes and SLMVs exhibited uptake and storage of biosynthetic acetylcholine.(More)
The cellular compartmentation of catalase was studied in digitonin-permeabilized rat hepatocytes. A biphasic dose-response curve was observed for the unmasking of catalase activity by digitonin in latency studies. About 40-60% of the total catalase activity was seen in the range of 5-200 microM digitonin compared to 13% free activity in control preparations(More)
It has been suggested that idiopathic parkinsonism, characterized by a loss of dopaminergic neurons of the nigrostriatal pathway, is due to the intracellular generation of reactive oxygen species, generated by a nonenzymatic or enzymatic partial reduction of dioxygen. Based on in vitro studies of the iron-containing monooxygenase tyrosine hydroxylase (TH),(More)
The molecular basis for the metabolic defect in patients with phenylketonuria has been characterized for seven missense point mutations (R252G/Q, L255V/S, A259V/T and R270S) and a termination mutation (G272X) in an evolutionarily conserved motif of exon 7 in the catalytic domain of the human phenylalanine hydroxylase (hPAH) gene. The mutations were(More)
Phenylalanine hydroxylase catalyzes the stereospecific hydroxylation of L-phenylalanine, the committed step in the degradation of this amino acid. We have solved the crystal structure of the ternary complex (hPheOH-Fe(II).BH(4).THA) of the catalytically active Fe(II) form of a truncated form (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase(More)