Toolsee J. Singh

Learn More
Tau protein from Alzheimer disease (AD) brain is phosphorylated at eleven Ser/Thr-Pro and nine Ser/Thr-X sites. The former sites are phosphorylated by proline-dependent protein kinases (PDPKs), the latter by non-PDPKs. The identities of both the PDPKs and non-PDPKs involved in AD tau hyperphosphorylation are still to be established. In this study we have(More)
Microtubule-associated protein tau is known to be hyperphosphorylated in Alzheimer disease brain and this abnormal hyperphosphorylation is associated with an inability of tau to promote the assembly of microtubule in the affected neurons. Our previous studies demonstrated that abnormally phosphorylated tau could be dephosphorylated after treatment with(More)
The phosphorylation of bovine tau, either by GSK-3 alone or by a combination of GSK-3 and several non-proline-dependent protein kinases (non-PDPKs), was studied. GSK-3 alone catalyzed the incorporation of approximately 3 mol 32P/mol tau at a relatively slow rate. Prephosphorylation of tau by A-kinase, C-kinase, or CK-2 (but not by CK-1, CaM kinase II or Gr(More)
Tau protein from Alzheimer disease (AD) brain is hyperphosphorylated by both proline-dependent protein kinases (PDPKs) and non-PDPKs. It is presently unclear how PDPKs and non-PDPKs interact in tau hyperphosphorylation. Previously we have shown that non-PDPKs can positively modulate the activity of a PDPK (GSK-3) in tau phosphorylation (Singh et al. (1995)(More)
The microtubule-associated protein tau is abnormally hyperphosphorylated in Alzheimer's disease. Both proline-dependent protein kinases (PDPKs) and non-PDPKs are involved in this hyperphosphorylation of tau. Several PDPKs can phosphorylate tau in vitro and induce Alzheimer-like epitopes to many phosphorylation-dependent antibodies. A similar induction has(More)
Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C) isolated from rat brain cytosol undergoes autophosphorylation in the presence of Mg2+, ATP, Ca2+, phosphatidylserine, and diolein. Approximately 2-2.5 mol of phosphate were incorporated per mol of the kinase. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis and(More)
The paired helical filaments (PHF) found in the brain of patients with Alzheimer disease (AD) are composed primarily of the microtubule-associated protein tau. Six isoforms of tau have been recognized and all are present in a hyperphosphorylated state in PHF. It is not known whether all tau isoforms serve equally well as substrates for various kinases. In(More)
Of 21 phosphorylation sites identified in PHF-tau 11 are on ser/thr-X motifs and are probably phosphorylated by non-proline-dependent protein kinases (non-PDPKs). The identities of the non-PDPKs and how they interact to hyperphosphorylate PHF-tau are still unclear. In a previous study we have shown that the rate of phosphorylation of human tau 39 by a PDPK(More)
The distribution of glycogen synthase (casein) kinase-1 (CK-1) among different rat tissues and subcellular fractions was investigated. Using casein, glycogen synthase and phosphorylase kinase as substrates, CK-1 activity was detected in kidney, spleen, liver, testis, lung, brain, heart, skeletal muscle and adipose tissue. The distribution of CK-1 among(More)
Previous studies have established that casein kinase-2 (CK-2) is stimulated by polyamines. In this study it is shown that glycogen synthase (casein) kinase-1 (CK-1) can be activated similarly. Using casein as the substrate, bovine kidney CK-1 was stimulated 7-, 2-, and 0.5-fold by spermine, spermidine, and putrescine, respectively. Half-maximal activation(More)