Learn More
We often fail to see something that at other times is readily detectable. Because the visual stimulus itself is unchanged, this variability in conscious awareness is likely related to changes in the brain. Here we show that the phase of EEG alpha rhythm measured over posterior brain regions can reliably predict both subsequent visual detection and(More)
Transcranial magnetic stimulation of the sensorimotor cortex results in decreased sensitivity of threshold electrical stimuli to fingers of the contralateral hand. It has been suggested that one factor contributing to neglect contralateral to a unilateral parietal lesion is a release of the normal hemisphere from reciprocal interhemispheric inhibition by(More)
Observers seem surprisingly poor at detecting changes in images following a large transient or flicker. In this study, we compared this change blindness phenomenon between human faces and other common objects (e.g., clothes). We found that changes were detected far more rapidly and accurately in faces than in other objects. This advantage for faces,(More)
In humans, the primary visual cortex (V1) is essential for conscious vision. However, even without V1 and in the absence of awareness, some preserved ability to accurately respond to visual inputs has been demonstrated, a phenomenon referred to as blindsight. We used transcranial magnetic stimulation (TMS) to deactivate V1, producing transient blindness for(More)
Human superior temporal sulcus (STS) is thought to be a key brain area for multisensory integration. Many neuroimaging studies have reported integration of auditory and visual information in STS but less is known about the role of STS in integrating other sensory modalities. In macaque STS, the superior temporal polysensory area (STP) responds to(More)
It has been established that successful ignoring of irrelevant distractors depends on the extent to which the current task loads attention. However, the previous load studies have typically employed neutral distractor stimuli (e.g., letters). In the experiments reported here, we examined whether the perception of irrelevant distractor faces would show the(More)
OBJECTIVE The ventrolateral nucleus of the thalamus (VL), based on its connectivity with the cerebellum and motor cortex, has long been considered to be involved with motor functions. We show that the human VL also plays a prominent role in sensory processing. METHODS Structural magnetic resonance imaging and diffusion tensor imaging were used to localize(More)
Previous reports of tactile responses in human visual area MT/V5 have used complex stimuli, such as a brush stroking the arm. These complex moving stimuli are likely to induce imagery of visual motion, which is known to be a powerful activator of MT. The area described as "MT" in previous reports consists of at least two distinct cortical areas, MT and MST.(More)
We localized the neuroanatomical correlates for control of saccadic eye movements and for finger movements using a combined transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) approach. Two participants underwent TMS while performing an endogenous saccade task. The motor hand area was localized by TMS and the region anterior to it(More)
The contributions of the superior prefrontal cortex (SPFC) and the superior parietal lobule (SPL) in generating voluntary endogenous and reflexive visually guided saccades were investigated using transcranial magnetic stimulation (TMS). Subjects made choice saccades to the left or right visual field in response to a central arrowhead (endogenous go signal)(More)