Learn More
Cell polarity is critical for epithelial structure and function. Adherens junctions (AJs) often direct this polarity, but we previously found that Bazooka (Baz) acts upstream of AJs as epithelial polarity is first established in Drosophila. This prompted us to ask how Baz is positioned and how downstream polarity is elaborated. Surprisingly, we found that(More)
Proper epithelial structure requires adherens junction (AJ) assembly. In the early Drosophila embryo, AJ assembly depends on Bazooka (Baz; PAR-3), but it is unclear how Baz affects AJ assembly and what precursors are involved. To understand this process at the molecular level, we counted the number of core AJ proteins and Baz proteins at an average spot AJ(More)
BACKGROUND Actin cytoskeletal networks push and pull the plasma membrane (PM) to control cell structure and behavior. Endocytosis also regulates the PM and can be promoted or inhibited by cytoskeletal networks. However, endocytic regulation of the general membrane cytoskeleton is undocumented. RESULTS Here, we provide evidence for endocytic inhibition of(More)
Adherens junctions (AJs) are thought to be key landmarks for establishing epithelial cell polarity, but the origin of epithelial polarity in Drosophila remains unclear. Thus, we examined epithelial polarity establishment during early Drosophila development. We found apical accumulation of both Drosophila E-Cadherin (DE-Cad) and the apical cue Bazooka (Baz)(More)
Germline cells segregate from the soma to maintain their totipotency, but the cellular mechanisms of this segregation are unclear. The Drosophila melanogaster embryo forms a posterior group of primordial germline cells (PGCs) by their division from the syncytial soma. Extended plasma membrane furrows enclose the PGCs in response to the germ plasm protein(More)
Tissue morphogenesis requires assembling and disassembling individual cell-cell contacts without losing epithelial integrity. This requires dynamic control of adherens junction (AJ) positioning around the apical domain, but the mechanisms involved are unclear. We show that atypical Protein Kinase C (aPKC) is required for symmetric AJ positioning during(More)
Cadherin-based adherens junctions are critical for connecting cells in tissues. Regulated cadherin trafficking also makes these complexes amazingly dynamic, with permissive and instructive consequences on multicellular development. Here, we review how cadherin trafficking affects various forms of tissue morphogenesis from Drosophila and Caenorhabditis(More)
Polarity landmarks guide epithelial development. In the early Drosophila ectoderm, the scaffold protein Bazooka (Drosophila PAR-3) forms apicolateral landmarks to direct adherens junction assembly. However, it is unclear how Bazooka becomes polarized. We report two mechanisms acting in concert to displace Bazooka from the basolateral membrane. As cells form(More)
To form regulated barriers between body compartments, epithelial cells polarize into apical and basolateral domains and assemble adherens junctions (AJs). Despite close links with polarity networks that generate single polarized domains, AJs distribute isotropically around the cell circumference for adhesion with all neighboring cells [1-3]. How AJs avoid(More)
  • 1