Learn More
Activation of any of the three known tachykinin receptors (NK1R, -2R, or -3R) can cause a rise in [Ca2+]i via a pertussis toxin-insensitive heterotrimeric G protein, Gq/G11, activation of phospholipase C (PLC), and a membrane depolarization. Tachykinins can depolarize neurons by two distinct mechanisms: 1) they reduce a resting K+ current in many neurons or(More)
The synaptic connections of Aplysia sensory neurons (SNs) undergo dramatic homosynaptic depression (HSD) with only a few low-frequency stimuli. Strong and weak SN synapses, although differing in their probabilities of release, undergo HSD at the same rate; this suggests that the major mechanism underlying HSD in these SNs may not be depletion of the(More)
This review focuses on synaptic depression at sensory neuron-to-motor neuron synapses in the defensive withdrawal circuit of Aplysia as a model system for analysis of molecular mechanisms of sensory gating and habituation. We address the following topics: 1. Of various possible mechanisms that might underlie depression at these sensory neuron-to-motor(More)
Adult rat sensory trigeminal ganglion neurons innervating the cornea (cTGNs) were isolated and identified following retrograde dye labeling with FM1-43. Using standard whole-cell patch clamp recording techniques, cTGNs could be subdivided by their action potential (AP) duration. Fast cTGNs had AP durations <1 ms (40%) while slow cTGNs had AP durations >1 ms(More)
1. The aim of this study was to investigate a role for Epithelial Sodium Channels (ENaCs) in the mechanical activation of low-threshold vagal afferent nerve terminals in the guinea-pig trachea/bronchus. 2. Using extracellular single-unit recording techniques, we found that the ENaC blocker amiloride, and its analogues dimethylamiloride and benzamil caused a(More)
There is growing concern about lack of scientific rigor and transparent reporting across many preclinical fields of biological research. Poor experimental design and lack of transparent reporting can result in conscious or unconscious experimental bias, producing results that are not replicable. The Analgesic, Anesthetic, and Addiction Clinical Trial(More)
Ca2+ is vital for release of neurotransmitters and trophic factors from peripheral sensory nerve terminals (PSNTs), yet Ca2+ regulation in PSNTs remains unexplored. To elucidate the Ca2+ regulatory mechanisms in PSNTs, we determined the effects of a panel of pharmacological agents on electrically evoked Ca2+ transients in rat corneal nerve terminals (CNTs)(More)
Adult inferior vagal ganglion neurons (nodose ganglion neurons, NGNs) were acutely isolated 4-6 days after section of their peripheral axons (vagotomy) and examined with the whole-cell patch-clamp technique. A subset (approximately 25 %) of vagotomized NGNs displayed depolarizing after-potentials (DAPs), not present in control NGNs. DAPs were inhibited by(More)
The fundamental role of calcium ions (Ca(2+)) in an excitable tissue, the frog heart, was first demonstrated in a series of classical reports by Sydney Ringer in the latter part of the nineteenth century (1882a, b; 1893a, b). Even so, nearly a century elapsed before it was proven that Ca(2+) regulated the excitability of primary sensory neurons. In this(More)
Peripheral sensory nerve terminals (PSNTs) have a dual function: reporting normal and abnormal sensations and releasing trophic factors to maintain the structure and function of epithelial cells. Although it is widely considered that intracellular Ca2+ plays a critical signaling role for both functions, the role of Ca2+ signaling has never been studied in(More)