Tony C. Dorlas

Learn More
In this paper we consider the transmission of classical information through a class of quantum channels with long-term memory, which are given by convex combinations of product channels. Hence, the memory of such channels is given by a Markov chain which is aperiodic but not irreducible. We prove the coding theorem and weak converse for this class of(More)
We give a new derivation of the variational formula for the pressure of the long-range-hopping Bose-Hubbard model, which was first proved in [1]. The proof is analogous to that of a theorem on noncommutative large deviations introduced by Petz, Raggio and Verbeure [2] and could similarly be extended to more general Bose system of mean-field type. We apply(More)
The classical capacity of a quantum channel with arbitrary Marko-vian correlated noise is evaluated. For an irreducible and aperiodic Markov Chain, the channel is forgetful, and one retrieves the known expression [15] for the capacity. For the more general case of a channel with long-term memory, which corresponds to a Markov chain which does not converge(More)
In this paper we evaluate the entanglement assisted classical capacity of a class of quantum channels with long-term memory, which are convex combinations of memoryless channels. The memory of such channels can be considered to be given by a Markov chain which is aperiodic but not irreducible. This class of channels was introduced in [7], where its product(More)
  • 1