Learn More
This study examined whether evoked magnetic fields and intra- and extracellular potentials from longitudinal CA3 slices of guinea-pig can be interpreted within a single theoretical framework that incorporates ligand- and voltage-sensitive conductances in the dendrites and soma of the pyramidal cells. The 1991 CA3 mathematical model of R. D. Traub is(More)
BACKGROUND Effective and accurate diagnosis of attention-deficit/hyperactivity disorder (ADHD) is currently of significant interest. ADHD has been associated with multiple cortical features from structural MRI data. However, most existing learning algorithms for ADHD identification contain obvious defects, such as time-consuming training, parameters(More)
We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity(More)
The absence of cortical responses to external stimuli is a dubious clinical sign during the first 1-2 days of brain injury. We previously showed that the amplitude of the somatic evoked potential (SEP) in the swine is diminished at the infarct site and perihematomal surround within the first 6 h of collagenase-induced intracerebral hemorrhage (ICH). We now(More)
The single tone extraction method (STEM) is a well developed algorithm for estimating the frequency, amplitude, and phase of one periodic signal or a single tone in complex temporal signals. This method is useful in neuroscience research since it provides an efficient simple means to remove line frequency noise present in many types of signal measurements.(More)
When connectivity analysis is carried out for event related EEG and MEG, the presence of strong spatial correlations from spontaneous activity in background may mask the local neuronal evoked activity and lead to spurious connections. In this paper, we hypothesized PCA decomposition could be used to diminish the background activity and further improve the(More)
Exploration of transient Granger causal interactions in neural sources of electrophysiological activities provides deeper insights into brain information processing mechanisms. However, the underlying neural patterns are confounded by time-dependent dynamics, non-stationarity and observational noise contamination. Here we investigate transient Granger(More)
In modern communication systems, high-speed and high-reliability is the two most important yardsticks. but digital code may be distorted during the transmission, so we should and must encoding some redundant bits to assure the received code correct to enhance the reliability of the communication systems. This thesis is to expound the encoding and decoding(More)
Macroscopic techniques are increasingly being used to estimate functional connectivity in the brain, which provides valuable information about brain networks. In any such endeavors it is important to understand capabilities and limitations of each technique through direct validation, which is often lacking. This study evaluated a multiple dipole source(More)
OBJECTIVE We studied effects of a temporary bilateral ligation of the internal carotid arteries on the subcortical and cortical structures of the somatosensory system by examining the thalamic input and postsynaptic cortical responses contained in the somatic evoked potentials (SEPs) recorded from the primary somatosensory cortex (SI) of the juvenile(More)
  • 1