Learn More
InGaN/GaN nanorod light-emitting diode (LED) arrays were fabricated using nanoimprint and reactive ion etching. The diameters of the nanorods range from 120 to 300 nm. The integral photoluminescence (PL) intensity for 120 nm nanorod LED array is enhanced as 13 times compared to that of the planar one. In angular-resolved PL (ARPL) measurements, there are(More)
In this paper, we propose and demonstrate a convenient and flexible approach for preparation large-area of photonic crystals (PhCs) structures on the GaN-based LED chip. The highly-ordered porous anodic alumina (AAO) with pitch of wavelength scale was adopted as a selective dry etching mask for PhCs-pattern transfer. The PhCs with different pore depths were(More)
The metallic-structure dependent localized surface plasmons (LSPs) coupling behaviors with InGaN QWs in a green LED epitaxial wafer are investigated by optical transmission, scanning electron microscopy (SEM) and photoluminescence (PL) measurements. Ag nanoparticles (NPs) are formed by thermal annealing Ag layer on the green LED wafer. SEM images show that(More)
An anodic aluminum oxide (AAO) patterned sapphire substrate, with the lattice constant of 520 ± 40 nm, pore dimension of 375 ± 50 nm, and height of 450 ± 25 nm was firstly used as a nanoimprint lithography (NIL) stamp and imprinted onto the surface of the green light-emitting diode (LED). A significant light extraction efficiency (LEE) was improved by 116%(More)
The optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) were investigated using the theoretical model based on the k·p method. Numerical results show that there is valence subband coupling which can influence the peak emission wavelength and emission intensity for TE and TM polarization components from Al-rich AlGaN/AlN QWs. Especially(More)
A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of(More)
The performance of nitride-based LEDs was improved by inserting dual stage and step stage InGaN/GaN strain relief layer (SRL) between the active layer and n-GaN template. The influences of step stage InGaN/GaN SRL on the structure, electrical and optical characteristics of GaN-based LEDs were investigated. The analysis of strain effect on recombination rate(More)
Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum(More)
The problem of weak magnetism has hindered the application of magnetic semiconductors since their invention, and on the other hand, the magnetic mechanism of GaN-based magnetic semiconductors has been the focus of long-standing debate. In this work, nanoscale GaN:Mn wires were grown on the top of GaN ridges by metalorganic chemical vapor deposition (MOCVD),(More)
Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL)(More)