Tomy Varghese

Learn More
This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using(More)
The basic principles of using sonographic techniques for imaging the elastic properties of tissues are described, with particular emphasis on elastography. After some preliminaries that describe some basic tissue stiffness measurements and some contrast transfer limitations of strain images are presented, four types of elastograms are described, which(More)
Echo-signal decorrelation due to tissue compression is a significant source of error in tissue displacement estimates obtained using crosscorrelation. Tissue displacement estimates are used to compute strain values for imaging the elasticity of biological soft tissues. The correlation coefficient between the pre- and post-compression echo rf signals reduces(More)
We present a theoretical formalism and simulation results that allow the incorporation of the elastic contrast properties of tissues with simple geometries into the elastographic noise models developed previously. This analysis results in the computation of the elastographic contrast-to-noise ratio (CNRe). The CNRe in elastography is an important quantity(More)
The Cramér-Rao Lower Bounds (CRLB) are derived for the displacement and strain estimation in directions orthogonal to the ultrasonic beam axis, using a previously-described recorrelation method of axial, lateral and elevational motion estimation. We also compare it to the lateral tracking method that involves the sole use of the axial signal in the(More)
The range of strains that can be imaged by any practical elastographic imaging system is inherently limited, and a performance measure is valuable to evaluate these systems from the signal and noise properties of their output images. Such a measure was previously formulated for systems employing cross-correlation based time-delay estimators through the(More)
The accuracy and precision of the strain estimates in elastography depend on a myriad number of factors. A clear understanding of the various factors (noise sources) that plague strain estimation is essential to obtain quality elastograms. The nonstationary variation in the performance of the strain filter due to frequency-dependent attenuation and lateral(More)
Elastography can produce quality strain images in vitro and in vivo. Standard elastography uses a coherent cross-correlation technique to estimate tissue displacement and tissue strain using a subsequent gradient operator. Although coherent estimation methods generally have the advantage of being highly accurate and precise, even relatively small undesired(More)
The nonstationary evolution of the strain filter due to lateral and elevational motion of the tissue scatterers across the ultrasound beam is analyzed for the 1-D cross-correlation-based strain estimator. The effective correlation coefficient that includes the contributions due to lateral and elevational signal decorrelation is used to derate the upper(More)
A theoretical formulation characterizing the noise performance of strain estimation using envelope signals is presented for the cross-correlation based strain estimator in elastography, using a modified strain filter approach. The strain filter describes the relationship among the elastographic signal-to-noise ratio (SNRe), sensitivity, contrast-to-noise(More)