Learn More
Sickness evokes various neural responses, one of which is activation of the hypothalamo-pituitary-adrenal (HPA) axis. This response can be induced experimentally by injection of bacterial lipopolysaccharide (LPS) or inflammatory cytokines such as IL-1. Although prostaglandins (PGs) long have been implicated in LPS-induced HPA axis activation, the mechanism(More)
We tested the contribution of the small GTPase Rho and its downstream target p160ROCK during the early stages of axon formation in cultured cerebellar granule neurons. p160ROCK inhibition, presumably by reducing the stability of the cortical actin network, triggered immediate outgrowth of membrane ruffles and filopodia, followed by the generation of initial(More)
Coordination of microtubules and the actin cytoskeleton is important in several types of cell movement. mDia1 is a member of the formin-homology family of proteins and an effector of the small GTPase Rho. It contains the Rho-binding domain in its amino terminus and two distinct regions of formin homology, FH1 in the middle and FH2 in the carboxy terminus.(More)
During development of the central nervous system, the apical-basal polarity of neuroepithelial cells is critical for homeostasis of proliferation and differentiation of neural stem cells. While adherens junctions at the apical surface of neuroepithelial cells are important for maintaining the polarity, the molecular mechanism regulating integrity of these(More)
Cytoskeleton is believed to contribute to activity-dependent processes underlying neuronal plasticity, such as regulations of cellular morphology and localization of signaling proteins. However, how neuronal activity controls actin cytoskeleton remains obscure. Taking advantage of confocal imaging of enhanced GFP-actin in the primary culture of hippocampal(More)
Animals under stress take adaptive actions that may lead to various types of behavioral disinhibition. Such behavioral disinhibition, when expressed excessively and impulsively, can result in harm in individuals and cause a problem in our society. We now show that, under social or environmental stress, mice deficient in prostaglandin E receptor subtype EP1(More)
Rho-GTPase has been implicated in axon outgrowth. However, not all of the critical steps controlled by Rho have been well characterized. Using cultured cerebellar granule neurons, we show here that stromal cell-derived factor (SDF)-1alpha, a neural chemokine, is a physiological ligand that can turn on two distinct Rho-dependent pathways with opposite(More)
Proteins of the membrane-associated guanylate kinase family play an important role in the anchoring and clustering of neurotransmitter receptors in the postsynaptic density (PSD) at many central synapses. However, relatively little is known about how these multifunctional scaffold proteins might provide a privileged site for activity- and cell(More)
Stress is a condition in which the body homeostasis is perturbed by various stimuli such as sickness and psychological stimuli. Stress evokes adaptive responses including febrile, neuroendocrine, and behavioral responses. Prostaglandin (PG) E(2) is a metabolite from arachidonic acid, and exerts its functions through G-protein-coupled receptors called EP1,(More)
Extensive pharmacological studies have recently emerged indicating that group 2 metabotropic glutamate receptors (mGluRs) comprising mGluR2 and mGluR3 subtypes are associated with several neurological and psychiatric disorders. mGluR2 is widely distributed both presynaptically and postsynaptically in a variety of neuronal cells, but the physiological role(More)