Learn More
G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A(2A) adenosine receptor(More)
Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the(More)
The altered activity of the fructose transporter GLUT5, an isoform of the facilitated-diffusion glucose transporter family, has been linked to disorders such as type 2 diabetes and obesity. GLUT5 is also overexpressed in certain tumour cells, and inhibitors are potential drugs for these conditions. Here we describe the crystal structures of GLUT5 from(More)
Human indoleamine 2,3-dioxygenase (IDO) catalyzes the cleavage of the pyrrol ring of L-Trp and incorporates both atoms of a molecule of oxygen (O2). Here we report on the x-ray crystal structure of human IDO, complexed with the ligand inhibitor 4-phenylimidazole and cyanide. The overall structure of IDO shows two alpha-helical domains with the heme between(More)
Membrane proteins act as gateways to cells, and they are responsible for much of the communication between cells and their environments. Crystallography of membrane proteins is often limited by the difficulty of crystallization in detergent micelles. Co-crystallization with antibody fragments has been reported as a method to facilitate the crystallization(More)
When the light-harvesting chlorophyll a/b protein complex (LHC-II) from pea thylakoid membranes is co-crystallized with native lipids, an octahedral crystal that exhibits no birefringence is obtained. Cryogenic electron micrographs of a crystal edge showed the crystal to be made up of hollow spherical assemblies with a diameter of 250 A. X-ray diffraction(More)
Recently, it has become apparent that reactive oxygen species (ROS) play many important roles in biological systems. For example, relationships between many diseases, such as cancer, cardiac infarction and arteriosclerosis, and ROS have been found. It is also well known that anti-oxidative agents scavenge ROS in biological systems, which in turn prevents(More)
Nitric-oxide reductase (NOR) of a denitrifying bacterium catalyzes NO reduction to N(2)O at the binuclear catalytic center consisting of high spin heme b(3) and non-heme Fe(B). The structures of the reaction intermediates in the single turnover of the NO reduction by NOR from Pseudomonas aeruginosa were investigated using optical absorption and EPR(More)
Nitric oxide reductase (NOR) is an iron-containing enzyme that catalyzes the reduction of nitric oxide (NO) to generate a major greenhouse gas, nitrous oxide (N(2)O). Here, we report the crystal structure of NOR from Pseudomonas aeruginosa at 2.7 angstrom resolution. The structure reveals details of the catalytic binuclear center. The non-heme iron (Fe(B))(More)
Anion exchanger 1 (AE1), also known as band 3 or SLC4A1, plays a key role in the removal of carbon dioxide from tissues by facilitating the exchange of chloride and bicarbonate across the plasma membrane of erythrocytes. An isoform of AE1 is also present in the kidney. Specific mutations in human AE1 cause several types of hereditary hemolytic anemias(More)