Tomoshi Kameda

Learn More
Recent experimental and theoretical studies suggest that rates and pathways of protein folding are largely decided by topology of the native structures, at least for small proteins. However, some exceptions are known; for example, protein L and protein G have the same topology, but exhibit different characteristics of the TSE. Thus, folding pathways of some(More)
Hexameric ring-shaped AAA+ molecular motors have a key function of active translocation of a macromolecular chain through the central pore. By performing multiscale molecular dynamics (MD) simulations, we revealed that HslU, a AAA+ motor in a bacterial homologue of eukaryotic proteasome, translocates its substrate polypeptide via paddling mechanism during(More)
MOTIVATION Understanding the details of protein-RNA interactions is important to reveal the functions of both the RNAs and the proteins. In these interactions, the secondary structures of the RNAs play an important role. Because RNA secondary structures in protein-RNA complexes are variable, considering the ensemble of RNA secondary structures is a useful(More)
To reduce the number of replicas required in the conventional replica exchange method for huge systems, recently the replica exchange with solute tempering (REST) method was proposed. Here we showed that a variant of REST realized by rescaling the force-field parameters can be performed with GROMACS 4 without changing the code. We tested the variant REST(More)
Internal cavities are important elements in protein structure, dynamics, stability and function. Here we use NMR spectroscopy to investigate the binding of molecular oxygen (O2) to cavities in a well-studied model for ligand binding, the L99A mutant of T4 lysozyme. On increasing the O2 concentration to 8.9 mM, changes in (1)H, (15)N, and (13)C chemical(More)
Recent studies have revealed that large numbers of non-coding RNAs are transcribed in humans, but only a few of them have been identified with their functions. Identification of the interaction target RNAs of the non-coding RNAs is an important step in predicting their functions. The current experimental methods to identify RNA–RNA interactions, however,(More)
Cyclic ADP-ribose (cADPR, 1, Scheme 1), originally isolated from sea urchins by Lee and co-workers, [1] is a general mediator of intracellular Ca 2+ ion signaling. [2] Analogues of cADPR have been extensively designed and synthesized [3, 4] because of their potential usefulness for investigating the mechanisms of cADPR-mediated Ca 2+ release and application(More)
  • 1