Tomonari Hirano

Learn More
BACKGROUND Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1))(More)
Understanding the nutrient uptake kinetics of kelp populations will contribute to an improved understanding of environmental adaptation and the breeding of new cultivars. In this study, we examined the morphological characteristics, carbon (C) and nitrogen (N) contents, and NO3 −–N and NH4 +–N uptake kinetics of Undaria pinnatifida sporophytes cultivated at(More)
Kelps are economically valuable primary producers; therefore, many studies on breeding have attempted to increase kelp productivity and quality. However, most cultivation tests have been performed in the ocean, thereby limiting the development of new cultivars. To reduce the breeding duration period and confirm cultivar phenotypes, we developed a novel tank(More)
A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation(More)
Efficient use of seed nutrient reserves is crucial for germination and establishment of plant seedlings. Mobilizing seed oil reserves in Arabidopsis involves β-oxidation, the glyoxylate cycle, and gluconeogenesis, which provide essential energy and the carbon skeletons needed to sustain seedling growth until photoautotrophy is acquired. We demonstrated that(More)
Male gametophytes of plants are exposed to environmental stress and mutagenic agents during the double fertilization process and therefore need to repair the DNA damage in order to transmit the genomic information to the next generation. However, the DNA damage response in male gametes is still unclear. In the present study, we analysed the response to DNA(More)
  • 1