Tomomichi Kato

Learn More
Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each(More)
Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China,(More)
To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex(More)
  • Jiquan Chenc, Hui Chene, +15 authors Jie Zhoup
  • 2013
The magnitude, spatial patterns, and controlling factors of the carbon and water fluxes of terrestrial ecosystems in China are not well understood due to the lack of ecosystem-level flux observations. We synthesized flux and micrometeorological observations from 22 eddy covariance flux sites across China, and examined the carbon fluxes, evapotranspiration(More)
Forests in the middle and high latitudes of the northern hemisphere function as a significant sink for atmospheric carbon dioxide (CO2). This carbon (C) sink has been attributed to two processes: age-related growth after land use change and growth enhancement due to environmental changes, such as elevated CO2, nitrogen deposition, and climate change.(More)
We used terrestrial ecosystem models to estimate spatial and temporal variability in and uncertainty of estimated soil carbon dioxide (CO2) efflux, or soil respiration, over the Japanese Archipelago. We compared five carbon-cycle models to assess inter-model variability: Biome-BGC, CASA, LPJ, SEIB, and VISIT. These models differ in approaches to soil carbon(More)
We analyse how climate change may alter risks posed by droughts to carbon fluxes in European ecosystems. The approach follows a recently proposed framework for risk analysis based on probability theory. In this approach, risk is quantified as the product of hazard probability and ecosystem vulnerability. The probability of a drought hazard is calculated(More)
Xianglan Li, Shunlin Liang,* Wenping Yuan,* Guirui Yu, Xiao Cheng, Yang Chen, Tianbao Zhao, Jinming Feng, Zhuguo Ma, Mingguo Ma, Shaomin Liu, Jiquan Chen, Changliang Shao, Shenggong Li, Xudong Zhang, Zhiqiang Zhang, Ge Sun, Shiping Chen, Takeshi Ohta, Andrej Varlagin, Akira Miyata, Kentaro Takagi, Nobuko Saiqusa and Tomomichi Kato 1 State Key Laboratory of(More)
RATIONALE Static-chamber flux measurements have suggested that one of the world's largest grasslands, the Qinghai-Tibetan Plateau (QTP), is a potential source of nitrous oxide (N2O), a major greenhouse gas. However, production and consumption pathways of N2O have not been identified by in situ field measurements. METHODS Ratios of N2O isotopomers(More)
Based on the model–data comparison at the eddy-covariance observation sites from CarboEastAsia datasets, we report the current status of the terrestrial carbon cycle modeling in monsoon Asia. In order to assess the modeling performance and discuss future requirements for both modeling and observation efforts in Asia, we ran eight terrestrial biosphere(More)