Tomomi Ichimiya

Learn More
Walker-Warburg syndrome, caused by mutations in protein O-mannosyltransferase-1 (POMT1), is an autosomal recessive disorder characterized by severe brain malformation, muscular dystrophy, and structural eye abnormalities. As humans have a second POMT, POMT2, we cloned each Drosophila ortholog of the human POMT genes and carried out RNA interference (RNAi)(More)
2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNP), a member of the 2H phosphoesterase superfamily, is firmly bound to brain white matter and found mainly in the central nervous system of vertebrates, and it catalyzes the hydrolysis of 2',3'-cyclic nucleotide to produce 2'-nucleotide. Recent studies on CNP-knockout mice have revealed that the absence of CNP(More)
The cDNA of lungfish Protopterus annectens myelin DM20 was cloned, and the complete amino acid sequence of Protopterusannectens DM20 was deduced. When five possible phylogenetic trees were tested for the DM20 sequences, the maximum likelihood method supported tree 1 [((tetrapods, lungfish), coelacanth), zebrafish, shark] or tree 5 [(tetrapods, lungfish),(More)
Walker-Warburg syndrome, a progressive muscular dystrophy, is a severe disease with various kinds of symptoms such as muscle weakness and occasional seizures. The genes of protein O-mannosyltransferases 1 and 2 (POMT1 and POMT2), fukutin, and fukutin-related protein are responsible for this syndrome. In our previous study, we cloned Drosophila orthologs of(More)
This study focuses on clarifying the contribution of sulfation to radiation-induced apoptosis in human Burkitt's lymphoma cell lines, using 3'-phosphoadenosine 5'-phosphosulfate transporters (PAPSTs). Overexpression of PAPST1 or PAPST2 reduced radiation-induced apoptosis in Namalwa cells, whereas the repression of PAPST1 expression enhanced apoptosis.(More)
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by(More)
There is increasing evidence that soluble glycosaminoglycans such as heparin can interfere with the infectivity of various viruses, including ecotropic murine leukemia viruses (MLVs). The ecotropic MLV, Friend MLV (F-MLV) and the neuropathogenic variants A8 MLV and PVC-211 MLV, were susceptible to heparin-mediated inhibition of infection of NIH 3T3 cells.(More)
T antigen (Galbeta1-3GalNAcalpha1-Ser/Thr), the well-known tumor-associated antigen, is a core 1 mucin-type O-glycan structure that is synthesized by core 1 beta1,3-galactosyltransferase (C1beta3GalT), which transfers Gal from UDP-Gal to Tn antigen (GalNAcalpha1-Ser/Thr). Three putative C1beta3GalTs have been identified in Drosophila. However, although all(More)
Recently, we have identified two 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development.(More)
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by(More)