Learn More
The field of drug testing currently needs a new integrated assay system, as accurate as systems using native tissues, that will allow us to predict arrhythmia risks of candidate drugs and the relationship between genetic mutations and acquired electrophysiological phenotypes. This could be accomplished by combining the microelectrode array (MEA) system with(More)
Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel(More)
To engineer a stem cell genome, we developed a technology for targeted elimination of chromosomes from mouse embryonic stem (ES)-somatic hybrid cells. Here we demonstrate the use of a universal chromosome elimination cassette (CEC) for elimination of a single embryonic stem cell (ESC)-derived chromosome 11 or 12, and also both copies of chromosome 6, which(More)
Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small(More)
Human pluripotential stem cells including both embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) possess self-renewing potency and pluripotentency and can differentiate into virtually any somatic cell type. These features are a distinct advantage for the generation of specific types of human tissue cells in vitro for continuous use in(More)
Cardiomyocytes arise from cells that migrate to the mid-to-anterior region of the primitive streak (PS) during embryogenesis. We previously showed that canonical Wnt/β-catenin pathway signaling leads to the development of nascent PS populations from human embryonic stem cells (hESCs) and that synergistic activation of the Wnt/β-catenin pathway and(More)
Cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) are functionally heterogeneous, display insufficient biological efficacy and generally possess the electrophysiological properties seen in fetal CMs. However, a homogenous population of hESC/hiPSC-CMs, with properties similar to those of(More)
Loss of heterozygosity by whole or partial loss of chromosomal regions is crucial to genetic disorders, cancers and diseases. It is difficult to analyze the mechanisms of pathogenesis caused by large-scale chromosomal abnormalities due to the extreme rarity of this mutagenesis. Using a Cre/inverted loxP system, we have generated a chromosome elimination(More)
  • 1