Learn More
To test our hypothesis that substitution of domain III of Bacillus thuringiensis delta-endotoxin (Cry) proteins might improve toxicity to pest insects, e.g., Spodoptera exigua, in vivo recombination was used to produce a number of cryIA(b)-cryIC hybrid genes. A rapid screening assay was subsequently exploited to select hybrid genes encoding soluble(More)
Hypoglycosylation of alpha-dystroglycan (alpha-DG) has been identified in several human diseases associated with muscular dystrophy and brain malformations, including Fukuyama-type congenital muscular dystrophy (FCMD) caused by mutations in the fukutin gene. Although disruption of the intra-extra membrane linkage in the sarcolemma via the dystroglycan (DG)(More)
BACKGROUND Epithelioid trophoblastic tumor (ETT) is a rare entity within trophoblastic tumors. It is difficult to recognize ETT because of its epithelioid appearance. CASE A 35-year-old female, 5 years after pregnancy, experienced genital bleeding 2 months prior to consulting us. Preoperative laboratory data showed a slightly elevated serum level of human(More)
A novel cryIC-type gene was isolated from a strain of Bacillus thuringiensis subsp. galleriae. A new polymerase chain reaction (PCR) technique with a set of several oligonucleotide primer pairs specific to the cryIC gene was used to screen a number of B. thuringiensis strains. PCR amplified several DNA fragments ranging from 100 bp to 1 kb for B.(More)
Sulfated glycosaminoglycans (GAGs), including heparan sulfate and chondroitin sulfate, are synthesized on the so-called common GAG-protein linkage region (GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser) of core proteins, which is formed by the stepwise addition of monosaccharide residues by the respective specific glycosyltransferases.(More)
Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS(More)
Salmonella enterica serovar Typhimurium delivers a variety of proteins via the Salmonella pathogenicity island 1 (SPI1)-encoded type III secretion system into host cells, where they elicit several physiological changes, including bacterial invasion, macrophage apoptosis, and enteropathogenesis. Once Salmonella has established a systemic infection, excess(More)
Salmonella enterica serovar Typhimurium, similar to various facultative intracellular pathogens, has been shown to respond to the hostile conditions inside macrophages of the host organism by inducing stress proteins, such as DnaK. DnaK forms a chaperone machinery with the cochaperones DnaJ and GrpE. To elucidate the role of the DnaK chaperone machinery in(More)
Recent studies have suggested implications for α-synuclein cytotoxicity in the pathomechanism of multiple system atrophy (MSA). Given in vitro evidence that α-synuclein generates oxidative stress, it is proposed that lipid peroxidation may be accelerated in MSA. To address this issue, we performed an immunohistochemical analysis of protein-bound(More)
Studies on the pathogenesis of Salmonella enterica serovar Typhimurium infections in mice have revealed the presence of two prominent virulence characteristics-the invasion of the nonphagocytic cells to penetrate the intestinal epithelium and the proliferation within host phagocytic cells to cause a systemic spread and the colonization of host organs. We(More)