Tomoko Kawaguchi

Learn More
Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR) sensors detect the refractive index (RI) changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to(More)
Basophil activation in response to antigen may represent specificities of type I allergy of individuals and their reactions in the body. We previously demonstrated that surface plasmon resonance (SPR) sensor could detect the activation of human basophils in response to antigens. In this study, we further developed a technique based on SPR imaging (SPRI)(More)
Surface plasmon resonance (SPR) biosensor detects intracellular signaling events as a change of the angle of resonance (AR). We previously reported that the activation of epidermal growth factor receptor (EGFR) on keratinocytes causes a unique triphasic change of AR, whereas the activation of other receptors, such as IgE receptor and adenosine A3 receptor(More)
MGL_1304, a major allergen in human sweat for patients with atopic dermatitis and/or cholinergic urticaria, is secreted from Malassezia globosa on human skin. The amounts of MGL_1304 and IgE against MGL_1304 are evaluated by the histamine release test using basophils or mast cells sensitized with serum containing IgE against MGL_1304, and enzyme linked(More)
A technique to visualize living cell activation in a real time manner without any labeling is required in the fields of life sciences and medicine. We have reported that surface plasmon resonance (SPR) sensors detect large changes of refractive index (RI) with living cells, such as mast cells, human basophils and lymphocytes. However conventional SPR(More)
ABSTRACT We report a parallel surface plasmon resonance imaging (SPRI) system partially automated for functional analysis of living cells. To parallelize the assay, an array on 10 microfluidic chambers was placed in the view field of SPRI. We have shown the possibility of automated assay by demonstrating analysis of an experimental model of type I allergy.(More)
Non-invasive real time evaluation of living cell conditions and functions are increasingly desired in the field of clinical diagnosis. For diagnosis of type I allergy, the identification of antigens that induces activation of mast cells and basophils is crucial to avoid symptoms of allergic diseases. However, conventional tests, such as detection of(More)
  • 1