Learn More
To elucidate the genetic mechanism of flowering in wheat, we performed expression, mutant and transgenic studies of flowering-time genes. A diurnal expression analysis revealed that a flowering activator VRN1, an APETALA1/FRUITFULL homolog in wheat, was expressed in a rhythmic manner in leaves under both long-day (LD) and short-day (SD) conditions. Under LD(More)
BACKGROUND Plant promoter architecture is important for understanding regulation and evolution of the promoters, but our current knowledge about plant promoter structure, especially with respect to the core promoter, is insufficient. Several promoter elements including TATA box, and several types of transcriptional regulatory elements have been found to(More)
The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from(More)
In plants, excess light has the potential to damage the photosynthetic apparatus. The damage is caused in part by reactive oxygen species (ROS) generated by electrons leaking from the photosynthetic electron transport system. To investigate the mechanisms equipped in higher plants to reduce high light (HL) stress, we surveyed the response of 7000(More)
Chloroplast division comprises a sequence of events that facilitate symmetric binary fission and that involve prokaryotic-like stromal division factors such as tubulin-like GTPase FtsZ and the division site regulator MinD. In Arabidopsis, a nuclear-encoded prokaryotic MinE homolog, AtMinE1, has been characterized in terms of its effects on a dividing or(More)
Intense and excessive light triggers the evolution of reactive oxygen species in chloroplasts, and these have the potential to cause damage. However, plants are able to respond to light stress and protect the chloroplasts by various means, including transcriptional regulation at the nucleus. Activation of light stress-responsive genes is mediated via(More)
The different forms of flowers in a species have attracted the attention of many evolutionary biologists, including Charles Darwin. In Fagopyrum esculentum (common buckwheat), the occurrence of dimorphic flowers, namely short-styled and long-styled flowers, is associated with a type of self-incompatibility (SI) called heteromorphic SI. The floral morphology(More)
Gametophytes of the fern Adiantum capillus-veneris L. were mutagenized by heavy ion beam irradiation and screened for mutants lacking chloroplast avoidance movement under high intensity blue light. Mutants recovered include several with small deletions in the AcPHOT2 gene. The avoidance movement response in these mutants could be restored by transient(More)
An intracellular 3-hydroxybutyrate (3HB)-oligomer hydrolase (PhaZ2(Reu)) of Ralstonia eutropha was purified from Escherichia coli harboring a plasmid containing phaZ2(Reu). The purified enzyme hydrolyzed linear and cyclic 3HB-oligomers. Although it did not degrade crystalline poly(3-hydroxybutyrate) (PHB), the purified enzyme degraded artificial amorphous(More)
To elucidate the mechanism(s) underlying dioecious flower development, the present study analyzed a SUPERMAN (SUP) homolog, SlSUP, which was identified in Silene latifolia. The sex of this plant is determined by heteromorphic X and Y sex chromosomes. It was revealed that SlSUP is a single-copy autosomal gene expressed exclusively in female flowers.(More)