Learn More
Plant promoter architecture is important for understanding regulation and evolution of the promoters, but our current knowledge about plant promoter structure, especially with respect to the core promoter, is insufficient. Several promoter elements including TATA box, and several types of transcriptional regulatory elements have been found to show local(More)
To elucidate the genetic mechanism of flowering in wheat, we performed expression, mutant and transgenic studies of flowering-time genes. A diurnal expression analysis revealed that a flowering activator VRN1, an APETALA1/FRUITFULL homolog in wheat, was expressed in a rhythmic manner in leaves under both long-day (LD) and short-day (SD) conditions. Under LD(More)
In plants, excess light has the potential to damage the photosynthetic apparatus. The damage is caused in part by reactive oxygen species (ROS) generated by electrons leaking from the photosynthetic electron transport system. To investigate the mechanisms equipped in higher plants to reduce high light (HL) stress, we surveyed the response of 7000(More)
Mammalian promoters are categorized into TATA and CpG-related groups, and they have complementary roles associated with differentiated transcriptional characteristics. While the TATA box is also found in plant promoters, it is not known if CpG-type promoters exist in plants. Plant promoters contain Y Patches (pyrimidine patches) in the core promoter region,(More)
The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from(More)
Chloroplast division comprises a sequence of events that facilitate symmetric binary fission and that involve prokaryotic-like stromal division factors such as tubulin-like GTPase FtsZ and the division site regulator MinD. In Arabidopsis, a nuclear-encoded prokaryotic MinE homolog, AtMinE1, has been characterized in terms of its effects on a dividing or(More)
Intense and excessive light triggers the evolution of reactive oxygen species in chloroplasts, and these have the potential to cause damage. However, plants are able to respond to light stress and protect the chloroplasts by various means, including transcriptional regulation at the nucleus. Activation of light stress-responsive genes is mediated via(More)
Gametophytes of the fern Adiantum capillus-veneris L. were mutagenized by heavy ion beam irradiation and screened for mutants lacking chloroplast avoidance movement under high intensity blue light. Mutants recovered include several with small deletions in the AcPHOT2 gene. The avoidance movement response in these mutants could be restored by transient(More)
To elucidate the mechanism(s) underlying dioecious flower development, the present study analyzed a SUPERMAN (SUP) homolog, SlSUP, which was identified in Silene latifolia. The sex of this plant is determined by heteromorphic X and Y sex chromosomes. It was revealed that SlSUP is a single-copy autosomal gene expressed exclusively in female flowers.(More)
Brassinosteroids (BRs) are steroidal phytohormones that are essential for many processes in plant growth and development, such as cell expansion, vascular differentiation, and responses to stress. The effects of BRs on cell division are unclear, as attested by contradictory published results. To determine the effect of BRs on cell division, the tobacco(More)