Learn More
Circadian rhythms in living organisms have long been attributed solely to a transcription-translation loop comprising a negative or positive feedback. The rhythms in cyanobacteria are known to be modulated by kaiC, kaiA and kaiB genes. It was recently shown, however, that their product proteins KaiC, KaiA and KaiB are sufficient to reconstitute the(More)
By incubating the mixture of three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro, T. Kondo and his colleagues in recent work reconstituted the robust circadian rhythm of the phosphorylation level of KaiC. This finding indicates that protein-protein interactions and the associated hydrolysis of ATP suffice to generate the circadian rhythm.(More)
Chaperonin-assisted protein folding proceeds through cycles of ATP binding and hydrolysis by GroEL, which undergoes a large structural change by the ATP binding or hydrolysis. One of the main concerns of GroEL is the mechanism of the productive and cooperative structural change of GroEL induced by the nucleotide. We studied the cooperative nature of GroEL(More)
The structure, stability, and unfolding-refolding kinetics of Escherichia coli-expressed recombinant goat alpha-lactalbumin were studied by circular dichroism spectroscopy, X-ray crystallography, and stopped-flow measurements, and the results were compared with those of the authentic protein prepared from goat milk. The electric properties of the two(More)
In recent experimental reports, robust circadian oscillation of the phosphorylation level of KaiC has been reconstituted by incubating three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro. This reconstitution indicates that protein-protein interactions and the associated ATP hydrolysis suffice to generate the oscillation, and suggests that(More)
Eukaryotic genome is organized in a set of chromosomes each of which consists of a chain of DNA and associated proteins. Processes involving DNA such as transcription, duplication, and repair, therefore, should be intrinsically related to the three-dimensional organization of the genome. In this article, we develop a computational model of the(More)
A remarkable feature of the self-renewing population of embryonic stem cells (ESCs) is their phenotypic heterogeneity: Nanog and other marker proteins of ESCs show large cell-to-cell variation in their expression level, which should significantly influence the differentiation process of individual cells. The molecular mechanism and biological implication of(More)
Actin-myosin (actomyosin) generates mechanical force by consuming ATP molecules. We apply the energy landscape perspective to address a controversial issue as to whether the myosin head moves with multiple steps after a single ATP hydrolysis or only a single mechanical event of the lever-arm swinging follows a single ATP hydrolysis. Here we propose a(More)
The actomyosin molecular motor, the motor composed of myosin II and actin filament, is responsible for muscle contraction, converting chemical energy into mechanical work. Although recent single molecule and structural studies have shed new light on the energy-converting mechanism, the physical basis of the molecular-level mechanism remains unclear because(More)
We characterized the thermodynamics of binding reactions of nucleotides ADP and ATPgammaS (a nonhydrolyzable analog of ATP) to GroEL in a temperature range of 5 degrees C to 35 degrees C by isothermal titration calorimetry. Analysis with a noncooperative binding model has shown that the bindings of nucleotides are driven enthalpically with binding constants(More)