Learn More
Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive(More)
RNA interference (RNAi) is a mechanism by which double-stranded RNAs (dsRNAs) suppress specific transcripts in a sequence-dependent manner. dsRNAs are processed by Dicer to 21-24-nucleotide small interfering RNAs (siRNAs) and then incorporated into the argonaute (Ago) proteins. Gene regulation by endogenous siRNAs has been observed only in organisms(More)
Induced pluripotent stem cells (iPSCs) have been generated by enforced expression of defined sets of transcription factors in somatic cells. It remains controversial whether iPSCs are molecularly and functionally equivalent to blastocyst-derived embryonic stem (ES) cells. By comparing genetically identical mouse ES cells and iPSCs, we show here that their(More)
DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several(More)
Only mammals have relinquished parthenogenesis, a means of producing descendants solely from maternal germ cells. Mouse parthenogenetic embryos die by day 10 of gestation. Bi-parental reproduction is necessary because of parent-specific epigenetic modification of the genome during gametogenesis. This leads to unequal expression of imprinted genes from the(More)
Pathogenic mutations in mtDNAs have been shown to be responsible for expression of respiration defects and resultant expression of mitochondrial diseases. This study directly addressed the issue of gene therapy of mitochondrial diseases by using nuclear transplantation of zygotes of transmitochondria mice (mito-mice). Mito-mice expressed respiration defects(More)
Primary imprinting during gametogenesis governs the monoallelic expression/repression of imprinted genes in embryogenesis. Previously, we showed that maternal primary imprinting is disrupted in neonate-derived non-growing oocytes. Here, to investigate precisely when and in what order maternal primary imprinting progresses, we produced parthenogenetic(More)
Dynamic epigenetic reprogramming occurs during mammalian germ cell development, although the targets of this process, including DNA demethylation and de novo methylation, remain poorly understood. We performed genome-wide DNA methylation analysis in male and female mouse primordial germ cells at embryonic days 10.5, 13.5, and 16.5 by whole-genome shotgun(More)
Nanog is a novel pluripotential cell-specific gene that plays a crucial role in maintaining the undifferentiated state of early postimplantation embryos and embryonic stem (ES) cells. We have explored the expression pattern and function of Nanog and a Nanog-homologue, Nanog-ps1.Nanog-ps1 was mapped on Chromosome 7 and shown to be a pseudogene.(More)
Because the Japanese native cattle Kuchinoshima-Ushi have been isolated in a small island and their lineage has been intensely protected, it has been assumed to date that numerous and valuable genomic variations are conserved in this cattle breed. In this study, we evaluated genetic features of this breed, including single nucleotide polymorphism (SNP)(More)