Tomohiro Hiraishi

Learn More
Poly[(R)-3-hydroxybutyrate] (PHB) depolymerase from Ralstonia pickettii T1 (PhaZRpiT1) consists of three functional domains to effectively degrade solid PHB materials, and its catalytic domain catalyzes the ester bond cleavage of the substrate. We performed the directed evolution of PhaZRpiT1 targeted at the catalytic domain in combination with the cell(More)
We previously reported that poly(Asp) hydrolase-1 (PahZ1KP-2) from Pedobacter sp. KP-2 selectively, but not completely, cleaved the amide bonds between β-Asp units in thermally synthesized poly(Asp) (tPAA). In the present study, the enzymatic hydrolysis of stereoisomeric β-tri(Asp)s by PahZ1KP-2 was investigated to clarify the substrate stereoselectivity of(More)
Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively(More)
Asn at position 285 (N285) in the catalytic domain of poly[(R)-3-hydroxybutyrate] (PHB) depolymerase from Ralstonia pickettii T1 most likely participates in the cleavage of ester bonds as revealed by our previous evolutionary engineering study using the error-prone polymerase chain reaction (PCR) method. To exhaustively examine the effects of mutations at(More)
  • 1