Tomohiro Harada

Learn More
Lemaitre–Tolman–Bondi models as specific spherically symmetric solutions of general relativity simplify in their reduced form some of the mathematical ingredients of black hole or cosmological applications. The conditions imposed in addition to spherical symmetry turn out to take a simple form at the kinematical level of loop quantum gravity, which allows a(More)
The asynchronous evolution has an advantage when evolving solutions with excessively different evaluation time since the asynchronous evolution evolves each solution independently without waiting for other evaluations, unlike the synchronous evolution requires evaluations of all solutions at the same time. As a novel asynchronous evolution approach, this(More)
We investigate a particle velocity in the κ-Minkowski space-time, which is one of the realization of a noncommutative space-time. We emphasize that arrival time analyses by high-energy γ-rays or neutrinos, which have been considered as powerful tools to restrict the violation of Lorentz invariance, are not effective to detect space-time noncommutativity. In(More)
General relativity as well as Newtonian gravity admits self-similar solutions due to its scale-invariance. This is a review on these self-similar solutions and their relevance to gravitational collapse. In particular, our attention is mainly paid on the crucial role of self-similar solutions in the critical behavior and attraction in gravitational collapse.