Learn More
When a small mass in a hand-held device oscillates along a single axis with asymmetric acceleration (strongly peaked in one direction and diffuse in the other), the holder typically experiences a kinesthetic illusion characterized by the sensation of being continuously pushed or pulled by the device. This effect was investigated because of its potential(More)
When visually impaired pedestrians walk from one place to another by themselves, they must update their orientation and position to find their way and avoid obstacles and hazards. We present the design of a new haptic direction indicator, whose purpose is to help blind pedestrians travel a path and avoid hazards intuitively and safely by means of haptic(More)
We developed a novel sensation interface device using galvanic vestibular stimulation (GVS). GVS alters your balance. Our device can induce vection (virtual sense of acceleration) synchronized with optic flow or musical rhythms. The device can also induce lateral walking towards the anode while human walking.
Wayfinding is of vital importance if visually impaired pedestrians are to walk by themselves from one place to another, since they must calculate both their orientation and position. Here, a new haptic direction indicator is proposed, which will help blind pedestrians to avoid hazardous areas intuitively and safely by means of haptic navigation. A novel(More)