Learn More
PINCH-1 is a widely expressed focal adhesion protein that forms a ternary complex with integrin-linked kinase (ILK) and CH-ILKBP/actopaxin/alpha-parvin (abbreviated as alpha-parvin herein). We have used RNA interference, a powerful approach of reverse genetics, to investigate the functions of PINCH-1 and ILK in human cells. We report here the following.(More)
Glycosylation is one of the most common post-translational modifications, and approximately 50% of all proteins are presumed to be glycosylated in eukaryotes. Branched N-glycans, such as bisecting GlcNAc, beta-1,6-GlcNAc and core fucose (alpha-1,6-fucose), are enzymatic products of N-acetylglucosaminyltransferase III, N-acetylglucosaminyltransferase V and(More)
Extracellular matrix (ECM), which provides critical scaffolds for all adhesive cells, regulates proliferation, differentiation, and apoptosis. Different cell types employ customized ECMs, which are thought to play important roles in the generation of so-called niches that contribute to cell-specific functions. The molecular entities of these customized(More)
How cells couple and uncouple regulation of cellular processes such as shape change and survival is an important question in molecular cell biology. PINCH-1, a widely expressed protein consisting of five LIM domains and a C-terminal tail, is an essential focal adhesion protein with multiple functions including regulation of the integrin-linked kinase (ILK)(More)
The functional units of cell adhesion are typically multiprotein complexes made up of three general classes of proteins; the adhesion receptors, the cell-extracellular matrix (ECM) proteins, and the cytoplasmic plaque/peripheral membrane proteins. The cell adhesion receptors are usually transmembrane glycoproteins (for example E-cadherin and integrin) that(More)
alpha1,6-Fucosylation plays key roles in many biological functions, as evidenced by the study of alpha1,6-fucosyltransferase (Fut8) knockout (Fut8(-/-)) mice. Phenotypically, Fut8(-/-) mice exhibit emphysema-like changes in the lung, and severe growth retardation. Fut8(-/-) cells also show marked dysregulation of the TGF-beta1 receptor, EGF receptor,(More)
Fibronectin splice variants containing the EIIIA and/or EIIIB exons are prominently expressed in the vasculature of a variety of human tumors but not in normal adult tissues. To understand the functions of these splice variants in physiological and tumor angiogenesis, we used EIIIB-null and EIIIA-null strains of mice to examine neovascularization of mouse(More)
Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8(-/-)) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we examined(More)
Changes in oligosaccharide structures are associated with numerous physiological and pathological events. E-cadherin-mediated cell-cell adhesion is believed to be both temporally and spatially regulated during development, and represents a key step in the acquisition of the invasive phenotype for many tumors. Here, we focus mainly on a mutual regulation(More)
Fibronectins (FNs) are major cell-adhesive proteins in the extracellular matrix and are essential for embryonic development. FNs are encoded by a single gene, but heterogeneity is introduced by alternative pre-mRNA splicing. One of the alternatively spliced segments, extra domain B (EDB), is prominently expressed during embryonic development and in tumor(More)