Learn More
1. The primary metabolism of diazepam was studied in human liver microsomes in order to investigate the kinetics and to identify the cytochrome P450 (CYP) isoforms responsible for the formation of the main diazepam metabolites, temazepam and N-desmethyldiazepam. 2. The formation kinetics of both metabolites were atypical and consistent with the occurrence(More)
HepaRG cells, a newly developed human hepatoma cell line, differentiate into hepatocyte-like morphology by treatment with dimethyl sulfoxide (DMSO). The expression of cytochrome P450 (P450) enzymes, transporter proteins, and transcription factors was stable in differentiated HepaRG cells over a period of 6 weeks when cultured with DMSO. Compared with human(More)
Amodiaquine (AQ) metabolism to N-desethylamodiaquine (DEAQ) is the principal route of disposition in humans. Using human liver microsomes and two sets of recombinant human cytochrome P450 isoforms (from lymphoblastoids and yeast) we performed studies to identify the CYP isoform(s) involved in the metabolism of AQ. CYP2C8 was the main hepatic isoform that(More)
HepaRG is a highly differentiated cell line that displays several hepatocyte-like functions, including drug-metabolizing enzymes. In this study, the HepaRG cells were characterized and evaluated as an in vitro model to predict cytochrome P450 (P450) enzyme induction of drugs in humans. Exposure of HepaRG cells to prototypical inducers resulted in induction(More)
This study demonstrates the stereoselective metabolism of the optical isomers of omeprazole in human liver microsomes. The intrinsic clearance (CL(int)) of the formation of the hydroxy metabolite from S-omeprazole was 10-fold lower than that from R-omeprazole. However, the CL(int) value for the sulfone and 5-O-desmethyl metabolites from S-omeprazole was(More)
Drug metabolism studies in the early phases of drug discovery and development will improve the selection of new chemical entities that will be successful in clinical trials. To meet the expanding demands for these studies on the numerous chemicals generated through combinatorial chemistry, we have heterologously expressed nine human drug-metabolizing(More)
The human clearance of proton pump inhibitors (PPIs) of the substituted benzimidazole class is conducted primarily by the hepatic cytochrome P450 (P450) system. To compare the potency and specificity of the currently used PPIs (i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole) as inhibitors of four cytochrome P450 enzymes (CYP2C9,(More)
INTRODUCTION HepaRG is a unique cell line showing a great plasticity, which differentiates to both canaliculae-like and hepatocyte-like cells. The long-term stability of key cell functions, for example, the drug-metabolizing cytochrome P450 (CYP) enzyme activities, in culture is especially useful in drug metabolism, disposition and toxicity studies. AREAS(More)
To study mechanisms behind the interindividual variability in CYP3A expression and the relative contribution of the different CYP3A enzymes to the overall CYP3A activity, we have analyzed CYP3A4, CYP3A5, CYP3A43, and PXR mRNA and CYP3A4 and CYP3A5 protein expression, catalytic activity, and polymorphism in the CYP3A5 gene in a panel of 46 Caucasian human(More)
Microsomal cytochrome P-450-dependent activities in the kidney of fish starved for 6 weeks were significantly lower than in fed fish whereas these activities in the liver were only depressed after 12 weeks of starvation. Hepatic cytochrome P-450-dependent activities were depressed to varying extents after 12 weeks of starvation when different substrates(More)