Learn More
Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct exible decision boundaries and often result in classiication performance superior to that of the model(More)
This paper presents a tutorial introduction to the use of variational methods for inference and learning in graphical models (Bayesian networks and Markov random fields). We present a number of examples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in(More)
We introduce a new class of upper bounds on the log partition function of a Markov random field (MRF). This quantity plays an important role in various contexts, including approximating marginal distributions, parameter estimation, combinatorial enumeration, statistical decision theory, and large-deviations bounds. Our derivation is based on concepts from(More)
We present a novel message passing algorithm for approximating the MAP problem in graphical models. The algorithm is similar in structure to max-product but unlike max-product it always converges, and can be proven to find the exact MAP solution in various settings. The algorithm is derived via block coordinate descent in a dual of the LP relaxation of MAP,(More)
A new method for detecting remote protein homologies is introduced and shown to perform well in classifying protein domains by SCOP superfamily. The method is a variant of support vector machines using a new kernel function. The kernel function is derived from a generative statistical model for a protein family, in this case a hidden Markov model. This(More)
We study the common problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low-rank approximation problems, which, unlike their unweighted version, do not admit a closed-form solution in general. We analyze, in addition , the nature of locally optimal solutions that arise(More)
We develop and analyze methods for computing provably optimal maximum a posteriori probability (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of tree-structured distributions, we obtain an upper bound on the optimal value of the original problem(More)
—We present a tree-based reparameterization (TRP) framework that provides a new conceptual view of a large class of algorithms for computing approximate marginals in graphs with cycles. This class includes the belief propagation (BP) or sum-product algorithm as well as variations and extensions of BP. Algorithms in this class can be formulated as a sequence(More)
Genome-wide location analysis was used to determine how the yeast cell cycle gene expression program is regulated by each of the nine known cell cycle transcriptional activators. We found that cell cycle transcriptional activators that function during one stage of the cell cycle regulate transcriptional activators that function during the next stage. This(More)