Tommaso Fedele

Learn More
OBJECTIVE Median nerve somatosensory evoked potentials (SEP) contain a brief oscillatory wavelet burst at about 600 Hz (σ-burst) superimposed on the initial cortical component (N20). While invasive single-cell recordings suggested that this burst is generated by increased neuronal spiking activity in area 3b, recent non-invasive scalp recordings could not(More)
Previous studies demonstrated the presence of Monochromatic Ultra-Slow Oscillations (MUSO) in human EEG. In the present study we explored the biological origin of MUSO by simultaneous recordings of EEG, Near-Infrared Spectroscopy (NIRS), arterial blood pressure, respiration and Laser Doppler flowmetry. We used a head-up tilt test in order to check whether(More)
QUESTION Human high-frequency (>400 Hz) components of somatosensory evoked potentials (hf-SEPs), which can be recorded non-invasively at the scalp, are generated by cortical population spikes, as inferred from microelectrode recordings in non-human primates. It is a critical limitation to broader neurophysiological study of hf-SEPs in that hundreds of(More)
BACKGROUND Non-invasively recorded somatosensory high-frequency oscillations (sHFOs) evoked by electric nerve stimulation are markers of human cortical population spikes. Previously, their analysis was based on massive averaging of EEG responses. Advanced neurotechnology and optimized off-line analysis can enhance the signal-to-noise ratio of sHFOs,(More)
OBJECTIVE High frequency oscillations (HFOs) and in particular fast ripples (FRs) in the post-resection electrocorticogram (ECoG) have recently been shown to be highly specific predictors of outcome of epilepsy surgery. FR visual marking is time consuming and prone to observer bias. We validate here a fully automatic HFO detector against seizure outcome. (More)
OBJECTIVE The somatosensory evoked potential (SEP) elicited by median nerve stimulation consists of the N20 peak together with the concurrent high frequency oscillation (HFO, > 500 Hz). We describe the conditions for HFO detection in ECoG and scalp EEG in intraoperative recordings. METHODS During neurosurgical interventions in six patients under propofol(More)
Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8-298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image(More)
  • 1