Tomi Kinnunen

Learn More
This paper gives an overview of automatic speaker recognition technology, with an emphasis on text-independent recognition. Speaker recognition has been studied actively for several decades. We give an overview of both the classical and the state-of-the-art methods. We start with the fundamentals of automatic speaker recognition, concerning feature(More)
An increasing number of independent studies have confirmed the vulnerability of automatic speaker verification (ASV) technology to spoofing. However, in comparison to that involving other biometric modalities, spoofing and countermeasure research for ASV is still in its infancy. A current barrier to progress is the lack of standards which impedes the(More)
While biometric authentication has advanced significantly in recent years, evidence shows the technology can be susceptible to malicious spoofing attacks. The research community has responded with dedicated countermeasures which aim to detect and deflect such attacks. Even if the literature shows that they can be effective, the problem is far from being(More)
The performance of biometric systems based on automatic speaker recognition technology is severely degraded due to spoofing attacks with synthetic speech generated using different voice conversion (VC) and speech synthesis (SS) techniques. Various countermeasures are proposed to detect this type of attack, and in this context, choosing an appropriate(More)
In speech and audio applications, short-term signal spectrum is often represented using mel-frequency cepstral coefficients (MFCCs) computed from a windowed discrete Fourier transform (DFT). Windowing reduces spectral leakage but variance of the spectrum estimate remains high. An elegant extension to windowed DFT is the so-called multitaper method which(More)
In speaker identification, most of the computation originates from the distance or likelihood computations between the feature vectors of the unknown speaker and the models in the database. The identification time depends on the number of feature vectors, their dimensionality, the complexity of the speaker models and the number of speakers. In this paper,(More)
A voice activity detector (VAD) plays a vital role in robust speaker verification, where energy VAD is most commonly used. Energy VAD works well in noise-free conditions but deteriorates in noisy conditions. One way to tackle this is to introduce speech enhancement preprocessing. We study an alternative, likelihood ratio based VAD that trains speech and(More)
During late-2013 through mid-2014 NIST coordinated a special machine learning challenge based on the i-vector paradigm widely used by state-of-the-art speaker recognition systems. The i-vector challenge was run entirely online and used as source data fixed-length feature vectors projected into a low-dimensional space (i-vectors) rather than audio(More)
I4U is a joint entry of nine research Institutes and Universities across 4 continents to NIST SRE 2012. It started with a brief discussion during the Odyssey 2012 workshop in Singapore. An online discussion group was soon set up, providing a discussion platform for different issues surrounding NIST SRE’12. Noisy test segments, uneven multi-session training,(More)