Tomer Ventura

Learn More
In this study, a female-specific DNA marker in the freshwater prawn Macrobrachium rosenbergii was identified through amplified fragment length polymorphism (AFLP). The AFLP-derived sequence-characterized amplified region (SCAR) marker was tested in over 200 individuals, giving reproducible sex identification. Further molecular characterization of the(More)
Like many metazoans, the freshwater prawn Macrobrachium rosenbergii begins its post-embryonic life with a set of morphologically distinct planktonic larval stages, followed by a benthic post-larval stage during which the maturing organism differs from the larvae both ecologically and physiologically. Understanding of the molecular basis underlying(More)
Androgenic glands (AGs) of the freshwater prawn Macrobrachium rosenbergii were subjected to endocrine manipulation, causing them to hypertrophy. Transcripts from these glands were used in the construction of an AG cDNA subtractive library. Screening of the library revealed an AG-specific gene, termed the M. rosenbergii insulin-like AG (Mr-IAG) gene. The(More)
Neuropeptides have been discovered in many arthropod species including crustaceans. The nature of their biological function is well studied and varies from behavior modulation to physiological regulation of complex biochemical processes such as metabolism, molt and reproduction. Due to their key role in these fundamental processes, neuropeptides are often(More)
In sequential hermaphrodites, intersexuality occurs naturally, usually as a transition state during sexual re-differentiation processes. In crustaceans, male sexual differentiation is controlled by the male-specific androgenic gland (AG). An AG-specific insulin-like gene, previously identified in the red-claw crayfish Cherax quadricarinatus (designated(More)
In Crustacea, an early evolutionary group (∼50 000 species) inhabiting most ecological niches, sex differentiation is regulated by a male-specific androgenic gland (AG). The identification of AG-specific insulin-like factors (IAGs) and genomic sex markers offers an opportunity for a deeper understanding of the sexual differentiation mechanism in crustaceans(More)
Full-length cDNA encoding two leptin sequences (tLepA and tLepB) and one leptin receptor sequence (tLepR) were identified in tilapia (Oreochromis niloticus). The full-length cDNA of tLepR was 3423bp, encoding a protein of 1140 amino acid (aa) which contained all functionally important domains conserved among vertebrate leptin receptors. The cDNAs of tLepA(More)
Sexual differentiation and maintenance of masculinity in crustaceans has been suggested as being regulated by a single androgenic gland (AG) insulin-like peptide (IAG). However, downstream elements involved in the signaling cascade remain unknown. Here we identified and characterized a gene encoding an insulin-like receptor in the prawn Macrobrachium(More)
A tyrosinase-like activity was found in human substantia nigra by polyacrylamide gel electrophoresis of fractions prepared from homogenates of the substantia nigra. The enzyme activity was detected by staining the gels with L-3,4-dihydroxyphenylalanine, dopamine and 5,6-dihydroxyindole as substrates for tyrosinase (EC A case of parkinsonism does(More)
Members of the insulin family of hormones are generally not regarded as gender-specific, although there is sporadic evidence for the possible involvement of insulin pathways in sexual differentiation. In crustaceans, sexual differentiation is controlled by the androgenic gland (AG), an organ unique to males. To date, attempts to identify active AG factors(More)