Learn More
The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature(More)
Interest in single-cell whole-transcriptome analysis is growing rapidly, especially for profiling rare or heterogeneous populations of cells. We compared commercially available single-cell RNA amplification methods with both microliter and nanoliter volumes, using sequence from bulk total RNA and multiplexed quantitative PCR as benchmarks to systematically(More)
Previous studies indicated that nonlinear properties of Gaussian distributed time series with long-range correlations, u(i), can be detected and quantified by studying the correlations in the magnitude series |u(i)|, the "volatility." However, the origin for this empirical observation still remains unclear and the exact relation between the correlations in(More)
Cancer is often viewed as a caricature of normal developmental processes, but the extent to which its cellular heterogeneity truly recapitulates multilineage differentiation processes of normal tissues remains unknown. Here we implement single-cell PCR gene-expression analysis to dissect the cellular composition of primary human normal colon and colon(More)
A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells.(More)
Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic(More)
Biological systems often display modularity, in the sense that they can be decomposed into nearly independent subsystems. Recent studies have suggested that modular structure can spontaneously emerge if goals (environments) change over time, such that each new goal shares the same set of sub-problems with previous goals. Such modularly varying goals can(More)
An incomplete understanding of the nature of heterogeneity within stem cell populations remains a major impediment to the development of clinically effective cell-based therapies. Transcriptional events within a single cell are inherently stochastic and can produce tremendous variability, even among genetically identical cells. It remains unclear how(More)
We study Erdös-Rényi random graphs with random weights associated with each link. We generate a "supernode network" by merging all nodes connected by links having weights below the percolation threshold (percolation clusters) into a single node. We show that this network is scale-free, i.e., the degree distribution is P(k) approximately k(-lambda) with(More)