Learn More
One of the central problems in supernova theory is the question how massive stars explode. Understanding the physical processes that drive the explosion is crucial for linking the stellar progenitors to the final remnants and for predicting observable properties like explosion energies, neutron star and black hole masses, nucleosynthetic yields, explosion(More)
Simple modifications for higher-order Godunov-type difference schemes are presented which allow for accurate advection of multi-fluid flows in hydrodynamic simulations. The constraint that the sum of all mass fractions has to be equal to one in every computational zone throughout the simulation is fulfilled by renormalizing the mass fractions during the(More)
Two-and three-dimensional simulations demonstrate that hydro-dynamic instabilities can lead to low-mode (l = 1, 2) asymmetries of the fluid flow in the neutrino-heated layer behind the supernova shock. This provides a natural explanation for aspherical mass ejection and for pulsar recoil velocities even in excess of 1000 km/s. We propose that the bimodality(More)
Assuming that the neutrino luminosity from the neutron star core is sufficiently high to drive supernova explosions by the neutrino-heating mechanism, we show that low-mode (l=1,2) convection can develop from random seed perturbations behind the shock. A slow onset of the explosion is crucial, requiring the core luminosity to vary slowly with time, in(More)
As a component of the Flash Center's validation program, we compare FLASH simulation results with experimental results from Los Alamos National Laboratory. The flow of interest involves the lateral interaction between a planar Ma=1.2 shock wave with a cylinder of gaseous sulfur hexafluoride (SF6) in air, and in particular the development of primary and(More)
We have performed two-dimensional simulations of core collapse supernovae that encompass shock revival by neutrino heating, neutrino-driven convection, explosive nucleosynthesis, the growth of Rayleigh-Taylor instabilities, and the propagation of newly formed metal clumps through the exploding star. A simulation of a Type II explosion in a 15 M ⊙ blue(More)
Two-dimensional simulations of strongly anisotropic supernova explosions of a nonrotating 15 M ⊙ blue supergiant progenitor are presented, which follow the hydrodynamic evolution from times shortly after shock formation until hours later. It is shown that explosions which around the time of shock revival are dominated by low-order unstable modes (i.e. by a(More)
The rapidly growing base of observational data for supernova explosions of massive stars demands theoretical explanations. Central of these is a self-consistent model for the physical mechanism that provides the energy to start and drive the disruption of the star. We give arguments why the delayed neutrino-heating mechanism should still be regarded as the(More)
We examine the evolution of inhomogeneities (fragments) of supernova ejecta in compact supernova remnants by means of hydrodynamical modeling and simplified analytical calculations. Under the influence of intense post-shock cooling the fragments become strongly compressed as they traverse the hot shocked region between the reverse and outer shocks of the(More)
1 Abstract We compare the results of two–dimensional simulations to experimental data obtained at Los Alamos National Laboratory in order to validate the FLASH code. FLASH is a multi–physics, block–structured adaptive mesh refinement code for studying compressible, reactive flows in various astrophysical environments. The experiment involves the lateral(More)
  • 1