Tomasz Nowicki

Learn More
Let G(n, c/n) and Gr(n) be an n-node sparse random graph and a sparse random rregular graph, respectively, and let I(n, r) and I(n, c) be the sizes of the largest independent set in G(n, c/n) and Gr(n). The asymptotic value of I(n, c)/n as n → ∞, can be computed using the Karp-Sipser algorithm when c ≤ e. For random cubic graphs, r = 3, it is only known(More)
An autonomic system is a complex information system comprised of many interconnected components operating at different time scales in a largely independent fashion that manage themselves to satisfy high-level system management requirements and specifications [5]. This includes providing the self-∗ properties of self-configuring, self-repairing,(More)
We study several classes of related scheduling problems including the carpool problem, its generalization to arbitrary inputs and the chairman assignment problem. We derive both lower and upper bounds for online algorithms solving these problems. We show that the greedy algorithm is optimal among online algorithms for the chairman assignment problem and the(More)
In this paper we study the relationship between valid inequalities for mixed-integer sets, lattice-free sets associated with these inequalities and structured disjunctive cuts, especially the t-branch split cuts introduced by Li and Richard (2008). By analyzing n-dimensional lattice-free sets, we prove that every facet-defining inequality of the convex hull(More)
In this paper we study the relationship between valid inequalities for mixed-integer sets, lattice-free sets associated with these inequalities and the multi-branch split cuts introduced by Li and Richard (2008). By analyzing n-dimensional lattice-free sets, we prove that for every integer n there exists a positive integer t such that every facet-defining(More)
A greedy algorithm for scheduling and digital printing with inputs in a convex polytope, and vertices of this polytope as successive outputs, has recently been proven to be bounded for any convex polytope in any dimension. This boundedness property follows readily from the existence of some invariant region for a dynamical system equivalent to the(More)
  • 1