Tomasz L. Religa

Learn More
We have assessed the published predictions of the pathway of folding of the B domain of protein A, the pathway most studied by computer simulation. We analyzed the transition state for folding of the three-helix bundle protein, by using experimental Phi values on some 70 suitable mutants. Surprisingly, the third helix, which has the most stable(More)
Proteins can sample conformational states that are critical for function but are seldom detected directly because of their low occupancies and short lifetimes. In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, in concert with a chemical shift-based(More)
Eukaryotes and archaea use a protease called the proteasome that has an integral role in maintaining cellular function through the selective degradation of proteins. Proteolysis occurs in a barrel-shaped 20S core particle, which in Thermoplasma acidophilum is built from four stacked homoheptameric rings of subunits, α and β, arranged α(7)β(7)β(7)α(7) (ref.(More)
The proteasome catalyzes the majority of protein degradation in the cell and plays an integral role in cellular homeostasis. Control over proteolysis by the 20S core-particle (CP) proteasome is achieved by gated access of substrate; thus, an understanding of the molecular mechanism by which these gates regulate substrate entry is critical. We used(More)
A simple labeling approach is presented based on protein expression in [1-(13)C]- or [2-(13)C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone C(alpha) sites, respectively. All of the methyl groups, with the exception of Thr and Ile(delta1) are produced with isolated (13)C spins (i.e., no (13)C-(13)C one bond(More)
The E2 enzymes are key enzymes in the ubiquitin and ubiquitin-like protein ligation pathways. To understand the functionality of the different E2 enzymes, we analyzed 190 protein sequences and 211 structures and electrostatic potentials. Key findings include: The ScUbc1 orthologs are defined by a C-terminal UBA domain. An N-terminal sequence motif that is(More)
The most controversial area in protein folding concerns its earliest stages. Questions such as whether there are genuine folding intermediates, and whether the events at the earliest stages are just rearrangements of the denatured state or progress from populated transition states, remain unresolved. The problem is that there is a lack of experimental(More)
We examined the co-operativity of ultra-fast folding of a protein and whether the Phi-value analysis of its transition state depended on the location of the optical probe. We incorporated in turn a tryptophan residue into each of the three helices of the B domain of Protein A. Each Trp mutant of the three-helix bundle protein was used as a pseudo-wild-type(More)
Helices 2 and 3 of Engrailed homeodomain (EnHD) form a helix-turn-helix (HTH) motif. This common motif is believed not to fold independently, which is the characteristic feature of a motif rather than a domain. But we found that the EnHD HTH motif is monomeric and folded in solution, having essentially the same structure as in full-length protein. It had a(More)