Tomasz Korzec

  • Citations Per Year
Learn More
We investigate the two flavor chiral Gross-Neveu model in the Schrödinger functional on the lattice. The procedure necessary to recover chiral symmetry in the continuum limit of this model with Wilson fermions is discussed. We introduce several useful observables and present a first demonstration of the feasibility of Monte-Carlo simulations in this model.(More)
We present results on the mass of the nucleon and the ∆ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of 690-300 MeV on lattices of size 2.1 fm and 2.7 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm with(More)
We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ_{MS[over ¯]}^{(3)}=341(12)  MeV. The(More)
We present results on the mass of the baryon octet and decuplet using two flavors of light dynamical twisted mass fermions. The strange quark mass is fixed to its physical value from the kaon sector in a partially quenched set up. Calculations are performed for light quark masses corresponding to a pion mass in the range 270-500 MeV and lattice sizes of 2.1(More)
We develop a methodology that enables us to extract accurately the electromagnetic ∆ form factors and their momentum dependence. We test our approach in the quenched approximation as a preparation for a study using dynamical fermions. Our calculation of the four form factors covers pion masses between about 410 MeV and 560 MeV on lattices with a size of 2.9(More)
We present results on the mass of the baryon octet and decuplet using two flavors of light dynamical twisted mass fermions. The strange quark mass is fixed to its physical value from the kaon sector in a partially quenched set up. Calculations are performed for light quark masses corresponding to a pion mass in the range 270-500 MeV and lattice sizes of 2.1(More)