Learn More
Post-translational histone modification has a fundamental role in chromatin biology and is proposed to constitute a 'histone code' in epigenetic regulation. Differential methylation of histone H3 and H4 lysyl residues regulates processes including heterochromatin formation, X-chromosome inactivation, genome imprinting, DNA repair and transcriptional(More)
The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the(More)
Recent theoretical contributions to the elucidation of mechanisms for iron containing enzymes are reviewed. The method used in most of these studies is hybrid density functional theory with the B3LYP functional. Three classes of enzymes are considered, the mononuclear non-heme enzymes, enzymes containing iron dimers, and heme-containing enzymes. Mechanisms(More)
The mechanism of the chlorination reaction of SyrB2, a representative α-ketoglutarate dependent halogenase, was studied with computational methods. First, a macromolecular model of the Michaelis complex was constructed using molecular docking procedures. Based on this structure, a smaller model comprising the first- and some of the second-shell residues of(More)
Density functional theory with the B3LYP hybrid functional has been used to study the mechanisms for dioxygen activation by four families of mononuclear non-heme iron enzymes: alpha-ketoacid-dependent dioxygenases, tetrahydrobiopterin-dependent hydroxylases, extradiol dioxygenases, and Rieske dioxygenases. These enzymes have a common active site with a(More)
The reaction mechanism for dioxygen activation in 2-oxoglutarate-dependent enzymes has been studied by means of hybrid density functional theory. The results reported here support a mechanism in which all chemical transformations take place on a quintet potential-energy surface. More specifically, the activated dioxygen species attacks the carbonyl group of(More)
The mechanism of the oxidative cleavage catalyzed by apocarotenoid oxygenase (ACO) was studied by using a quantum chemical (DFT: B3 LYP) method. Based on the available crystal structure, relatively large models of the unusual active-site region, in which a ferrous ion is coordinated by four histidines and no negatively charged ligand, were selected and used(More)
High-accuracy quantum chemistry has now been applied for almost 10 years to biological problems involving transition metal active sites. The leading theoretical method is hybrid density functional theory (DFT), usually with the B3LYP functional. The chemical models vary in size, commonly from 30 to 100 atoms treated fully quantum mechanically. Two schools(More)
Nonspecific lipid transfer proteins (nsLTPs) are basic proteins, stabilized by four disulfide bonds, and are expressed throughout the plant kingdom. These proteins are also known as important allergens in fruits and tree nuts. In this study, the nsLTP from hazelnuts, Cor a 8, was purified and its crystal structure determined. The protein is stable at low pH(More)