Tomasz Arodz

Learn More
Virtual filtering and screening of combinatorial libraries have recently gained attention as methods complementing the high-throughput screening and combinatorial chemistry. These chemoinformatic techniques rely heavily on quantitative structure-activity relationship (QSAR) analysis, a field with established methodology and successful history. In this(More)
We propose a new classification method for the prediction of drug properties, called random feature subset boosting for linear discriminant analysis (LDA). The main novelty of this method is the ability to overcome the problems with constructing ensembles of linear discriminant models based on generalized eigenvectors of covariance matrices. Such linear(More)
This paper describes Graph Investigator, the application intended for analysis of complex networks. A rich set of application functions is briefly described including graph feature generation, comparison, visualization and edition. The program enables to analyze global and local structural properties of networks with the use of various descriptors derived(More)
We have employed two pattern recognition methods used commonly for face recognition in order to analyse digital mammograms. The methods are based on novel classification schemes, the AdaBoost and the support vector machines (SVM). A number of tests have been carried out to evaluate the accuracy of these two algorithms under different circumstances. Results(More)
The most frequent symptoms of ductal carcinoma recognised by mammography are clusters of microcalcifications. Their detection from mammograms is difficult, especially for glandular breasts. We present a new computer-aided detection system for small field digital mammography in planning of breast biopsy. The system processes the mammograms in several steps.(More)
The NCI-60 cell line set is likely the most molecularly profiled set of human tumor cell lines in the world. However, a critical missing component of previous analyses has been the inability to place the massive amounts of "-omic" data in the context of functional protein signaling networks, which often contain many of the drug targets for new targeted(More)
The regulation of gene expression by transcription factors is a key determinant of cellular phenotypes. Deciphering genome-wide networks that capture which transcription factors regulate which genes is one of the major efforts towards understanding and accurate modeling of living systems. However, reverse-engineering the network from gene expression(More)