Tomasz A. Wesolowski

Learn More
For nine solvents of various polarity (from cyclohexane to water), the solvatochromic shifts of the lowest absorption band of coumarin 153 are evaluated using a computational method based on frozen-density embedding theory [Wesolowski and Warshel, J. Chem Phys., 1993, 97, 9050, and subsequent articles]. In the calculations, the average electron density of(More)
A strategy to construct approximants to the kinetic-energy-functional dependent component (v(t)[rho(A),rho(B)](r)) of the effective potential in one-electron equations for orbitals embedded in a frozen-density environment [Eqs. (20) and (21) in Wesolowski and Warshel, J. Phys. Chem. 97, (1993) 8050] is proposed. In order to improve the local behavior of the(More)
The absorption spectrum of fluorenone in zeolite L is calculated from first-principles simulations. The broadening of each band is obtained from the explicit treatment of the interactions between the chromophore and its environment in the statistical ensemble. The comparison between the simulated and measured spectra reveals the main factors affecting the(More)
The correspondence between the exact embedding potential and the pair of the electron densities--that of the embedded molecule and that of its environment [Wesolowski and Warshel, J. Phys. Chem. 1993, 97, 8050]--is used to generate the average embedding potential and to subsequently calculate the solvatochromic shifts in a number of organic chromophores in(More)
The effective embedding potential introduced by Wesolowski and Warshel [J. Phys. Chem., 97 (1993) 8050] depends on two electron densities: that of the environment (n B) and that of the investigated embedded subsystem (n A). In this work, we analyze this potential for pairs n A and n B , for which it can be obtained analytically. The obtained potentials are(More)
  • Cristina Stefaniu, Pierre-Léonard Zaffalon, +5 authors Andreas Zumbuehl
  • 2015
A series of long-tail alkyl ethanolamine analogs containing amide-, urea-, and thiourea moieties was synthesized and the behavior of the corresponding monolayers was assessed on the Langmuir-Pockels trough combined with grazing incidence X-ray diffraction experiments and complemented by computer simulations. All compounds form stable monolayers at the soft(More)
The density of atomic systems is analysed via the Single-Exponential Decay Detector (SEDD). SEDD is a scalar field designed to explore mathematical, rather than physical, properties of electron density. Nevertheless, it has been shown that SEDD can serve as a descriptor of bonding patterns in molecules as well as an indicator of atomic shells [P. de Silva,(More)