Learn More
For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces, we here model a complex, yet prototypical, three-component system consisting of a Cu−phthalocyanine (CuPc) film on a(More)
Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties(More)
The adsorption of NO molecules on small Pd(n) (n = 1-6) clusters has been studied using first-principles density-functional theory. Three adsorption sites were considered: vertex (on-top), bridge, and hollow. Adsorption is strong, ranging from 2 to 3 eV. In all cases NO adsorbs in a bent configuration. Calculated shifts in N-O bond vibration frequencies(More)
The molecular and dissociative adsorption of methane-thiol (CH(3)SH) in the high-coverage limit on the (111) surfaces of the Ni-group metals has been investigated using ab initio density functional techniques. In molecular form, methane-thiol is bound to the surface only by weak polarization-induced forces in a slightly asymmetric configuration with the C-S(More)
The vibrational eigenstates of methane-thiol (CH(3)SH) and methane-thiolate (CH(3)S) in the gas phase and in dense monolayers adsorbed on the (111) surfaces of the Ni-group metals have been investigated within the framework of density-functional theory using generalized response and force-constant techniques. For isolated CH(3)SH good agreement of(More)
  • 1