Learn More
X inactivation equalizes the dosage of gene expression between the sexes, but some genes escape silencing and are thus expressed from both alleles in females. To survey X inactivation and escape in mouse, we performed RNA sequencing in Mus musculus x Mus spretus cells with complete skewing of X inactivation, relying on expression of single nucleotide(More)
Although subcellular mRNA trafficking has been demonstrated as a mechanism to control protein distribution, it is generally believed that most protein localization occurs subsequent to translation. To address this point, we developed and employed a high-resolution fluorescent in situ hybridization procedure to comprehensively evaluate mRNA localization(More)
We demonstrate that paired expression profiles of microRNAs (miRNAs) and mRNAs can be used to identify functional miRNA-target relationships with high precision. We used a Bayesian data analysis algorithm, GenMiR++, to identify a network of 1,597 high-confidence target predictions for 104 human miRNAs, which was supported by RNA expression data across 88(More)
We developed PolyA-seq, a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts, and used it to globally map polyadenylation (polyA) sites in 24 matched tissues in human, rhesus, dog, mouse, and rat. We show that PolyA-seq is as accurate as existing RNA sequencing (RNA-seq) approaches for digital(More)
In animals, egg activation triggers a cascade of posttranscriptional events that act on maternally synthesized RNAs. We show that, in Drosophila, the PAN GU (PNG) kinase sits near the top of this cascade, triggering translation of SMAUG (SMG), a multifunctional posttranscriptional regulator conserved from yeast to humans. Although PNG is required for(More)
In contrast to existing estimates of approximately 200 murine imprinted genes, recent work based on transcriptome sequencing uncovered parent-of-origin allelic effects at more than 1,300 loci in the developing brain and two adult brain regions, including hundreds present in only males or females. Our independent replication of the embryonic brain stage,(More)
BACKGROUND Vertebrates share the same general body plan and organs, possess related sets of genes, and rely on similar physiological mechanisms, yet show great diversity in morphology, habitat and behavior. Alteration of gene regulation is thought to be a major mechanism in phenotypic variation and evolution, but relatively little is known about the broad(More)
We developed a procedure for the preparation of whole transcriptome cDNA libraries depleted of ribosomal RNA from only 1 microg of total RNA. The method relies on a collection of short, computationally selected oligonucleotides, called 'not-so-random' (NSR) primers, to obtain full-length, strand-specific representation of nonribosomal RNA transcripts. In(More)
We describe the application of a microarray platform, which combines information from exon body and splice-junction probes, to perform a quantitative analysis of tissue-specific alternative splicing (AS) for thousands of exons in mammalian cells. Through this system, we have analyzed global features of AS in major mouse tissues. The results provide numerous(More)
Alternative splicing (AS) functions to expand proteomic complexity and plays numerous important roles in gene regulation. However, the extent to which AS coordinates functions in a cell and tissue type specific manner is not known. Moreover, the sequence code that underlies cell and tissue type specific regulation of AS is poorly understood. Using(More)