Learn More
In this work, we investigate off-resonance effect on the (14)N nuclear quadrupole resonance magnetization decay during the spin-lock spin-echo pulse sequence (SLSE). The compound chosen for this study is paranitrotoluene with a single (14)N site, which represents a suitable simplified model for the explosive trinitrotoluene with six nonequivalent (14)N(More)
We present the measurements of the proton spin-lattice relaxation time T1 of liquid crystal 4-n-octyl-4'-cyanobiphenyl (8CB) confined into randomly oriented approximately 15 nm pores of untreated porous glass. In the low kilohertz range the spin-lattice relaxation rate in the nanoconfined 8CB is about ten times larger than in the bulk. We show that the(More)
Nuclear quadrupole resonance (NQR) has a distinct potential to verify the presence of nitrogen bearing substances based on the unequivocal signatures of their spectra. Therefore, this technique is especially suitable for remote detection of illicit substances and explosives. Unfortunately, the inherent signal-to-noise of the most abundant explosive(More)
Differences in cross-section areas of calf structures were studied in different sportsmen groups and controls: sprinters, long-distance runners, free-climbers, and sport non active persons. The cross-section areas of calf tissues were established by magnetic resonance imaging. There were no statistically significant differences between the groups in single(More)
The off-resonance dependence of the amplitudes of the six dominant (14)N nuclear quadrupole resonance (NQR) lines in commercial polymorphic trinitrotoluene (TNT) sample were experimentally determined for a wide range of experimental parameters when irradiated with the spin-lock spin-echo (SLSE) pulse sequence. We find that the amplitudes off-resonance(More)
We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of(More)
We present a proton NMR relaxometry study of the molecular dynamics in three liquid crystalline systems: 4'-n-pentyl-4-cyanobiphenyl (5CB), (S)-4'-(3-methylpentyl)-4-cyanobiphenyl (5CB*), and a 12% weight mixture of 5CB* in 5CB. The proton spin-lattice relaxation time (T1) was measured as a function of temperature and Larmor frequency in the isotropic,(More)
The resonance frequency-space and the frequency gradient-space relations are evaluated analytically for the static fringe magnetic field of superconducting magnets used in the NMR diffusion measurements. The model takes into account the actual design of the high-homogeneity magnet coil system that consists of the main coil and the cryoshim coils and enables(More)
¹⁴N nuclear quadrupole resonance (NQR) is a promising method for the analysis of pharmaceuticals or for the detection of nitrogen based illicit compounds, but so far, the technique is still not widely used, mostly due to the very low sensitivity. This problem is already acute in the preliminary NQR stage, when a compound is being examined for the first time(More)
Liquid crystals confined into small cavities are known to have a weak orientational order even above the nematic-isotropic transition temperature. The surface-induced order and molecular dynamics in this temperature range are studied with the aid of deuteron NMR spectra, spin relaxation times T(1) and T(2,) proton dipolar-correlation effect, and direct(More)