Learn More
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic(More)
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is(More)
We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian(More)
Many animals regularly hoard food for future use, which appears to be an important adaptation to a seasonally and/or unpredictably changing environment. This food-hoarding paradigm is an excellent example of a natural system that has broadly influenced both theoretical and empirical work in the field of biology. The food-hoarding paradigm has played a major(More)
A well-developed spatial memory is important for many animals, but appears especially important for scatter-hoarding species. Consequently, the scatter-hoarding system provides an excellent paradigm in which to study the integrative aspects of memory use within an ecological and evolutionary framework. One of the main tenets of this paradigm is that(More)
Some animals have been shown to be able to remember which type of food they hoarded or encountered in which location and how long ago (what-where-when memory). In this study, we test whether magpies (Pica pica) also show evidence of remembering these different aspects of a past episode. Magpies hid red- and blue-dyed pellets of scrambled eggs in a large(More)
Understanding the survival value of behaviour does not tell us how the mechanisms that control this behaviour work. Nevertheless, understanding survival value can guide the study of these mechanisms. In this paper, we apply this principle to understanding the cognitive mechanisms that support cache retrieval in scatter-hoarding animals. We believe it is too(More)
The role of the hippocampal formation (HF) in memory processing was assessed in food-storing black-capped chickadees (Poecile atricapilla) by reversibly inactivating the HF during different memory tests. The memory tests required birds to remember a location based on spatial cues only, or based on a combination of both spatial and distinct visual cues.(More)
What-Where-When (WWW) memory tasks have been used to study episodic(-like) memory in non-human animals. In this study, we investigate whether humans use episodic memory to solve such a WWW memory task. Participants are assigned to one of two treatments, in which they hide different coin types (what) in different locations (where) on two separate occasions(More)