Tom S Carter

Learn More
We introduce UltraHaptics, a system designed to provide multi-point haptic feedback above an interactive surface. UltraHaptics employs focused ultrasound to project discrete points of haptic feedback through the display and directly on to users' unadorned hands. We investigate the desirable properties of an acoustically transparent display and demonstrate(More)
We present a method for creating three-dimensional haptic shapes in mid-air using focused ultrasound. This approach applies the principles of <i>acoustic radiation force</i>, whereby the non-linear effects of sound produce forces on the skin which are strong enough to generate tactile sensations. This mid-air haptic feedback eliminates the need for any(More)
Dendritic side chains have been used to modify the binding environment in anthracene-based synthetic carbohydrate receptors. Control of length, charge, and branching enabled the positioning of side-chain carboxylate groups in such a way that they assisted in binding substrates rather than blocking the cavity. Conformational degeneracy in the dendrimers(More)
Acoustic levitation in air has applications in contactless handling and processing. Here a first-order Bessel function-shaped acoustic field, generated using an 8-element circular array operating at 40 kHz, traps millimeter-sized objects against gravity. The device can manipulate objects in a vertical plane over a few millimeters with an accuracy of ± 0.09(More)
Acoustic levitation in air has applications in contactless handling and processing. Here a first-order Bessel function-shaped acoustic field, generated using an 8-element circular array operating at 40 kHz, traps millimeter-sized objects against gravity. The device can manipulate objects in a vertical plane over a few millimeters with an accuracy of(More)
The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water-soluble carbohydrate receptors ("synthetic lectins"). Both systems show outstanding affinities for derivatives of N-acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside GlcNAc-β-OMe with Ka ≈20,000 m(-1), whereas the other one(More)
Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic(More)
Biomimetic carbohydrate receptors ("synthetic lectins") have potential as agents for biological research and medicine. However, although effective strategies are available for "all-equatorial" carbohydrates (glucose, etc.), the recognition of other types of saccharide under natural (aqueous) conditions is less well developed. Herein we report a new approach(More)
This thesis represents work done towards implementing a means of data-driven process control on a production line which produces medical ultrasound imaging equipment. Because the line is a hand assembly operation and because the line produces extremely low volumes of product, methods other than traditional statistical process control were developed. These(More)
Carbohydrate receptors with a chiral framework have been generated by combining a tetra-aminopyrene and a C3-symmetrical triamine via isophthalamide spacers bearing water-solubilising groups. These "synthetic lectins" are the first to show enantiodiscrimination in aqueous solution, binding N-acetylglucosamine (GlcNAc) with 16 : 1 enantioselectivity. They(More)