Learn More
We designed, fabricated and tested the laser optoacoustic imaging system for breast cancer detection (LOIS-64), which fuses optical and acoustic imaging techniques in one modality by utilizing pulsed optical illumination and ultrawide-band ultrasonic detection of resulting optoacoustic (OA) signals. The system was designed to image a single breast slice in(More)
Electronic chirality near the Dirac point is a key property of graphene systems, which is revealed by the spectral intensity patterns as measured by angle-resolved photoemission spectroscopy under various polarization conditions. Specifically, the strongly modulated circular patterns for monolayer (bilayer) graphene rotate by ±90° (±45°) in changing from(More)
Spin-polarized gapless surface states in topological insulators form chiral Dirac cones. When such materials are reduced to thin films, the Dirac states on the two faces of the film can overlap and couple by quantum tunneling, resulting in a thickness-dependent insulating gap at the Dirac point. Calculations for a freestanding Sb film with a thickness of(More)
We have studied the structural stability of thin silver films with thicknesses of N = 1 to 15 monolayers, deposited on an Fe(100) substrate. Photoemission spectroscopy results show that films of N = 1, 2, and 5 monolayer thicknesses are structurally stable for temperatures above 800 kelvin, whereas films of other thicknesses are unstable and bifurcate into(More)
The linewidths of sp- and d-band derived electronic quantum-well states in thin films of Ag on Fe(100) are measured as a function of temperature to yield the electron-phonon coupling parameters. The results vary by a factor of up to 35 among the different states. The origin of these huge differences is traced to the decay path selection for the various(More)
Atomically uniform silver films grown on highly doped n-type Si(111) substrates show fine-structured electronic fringes near the silicon valence band edge as observed by angle-resolved photoemission. No such fringes are observed for silver films grown on lightly doped n-type substrates or p-type substrates, although all cases exhibited the usual(More)
The three-dimensional structure of human serum albumin has been solved at 6.0 angstrom (A) resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 (unit cell constants a = b = 186.5 +/- 0.5 A and c = 81.0 +/- 0.5 A) and diffracted x-rays to(More)
Angle-resolved photoemission is employed to measure the band structure of TiSe2 in order to clarify the nature of the ( 2 x 2 x 2) charge density wave transition. The results show a very small indirect gap in the normal phase transforming into a larger indirect gap at a different location in the Brillouin zone. Fermi surface topology is irrelevant in this(More)
Topological surface states are protected against local perturbations, but this protection does not extend to chemical reaction over the whole surface, as demonstrated by theoretical studies of the oxidation of Bi(2)Se(3) and its effects on the surface spin polarization and current. While chemisorption of O(2) largely preserves the topological surface(More)
The physical and chemical properties of thin metal films show damped oscillations as a function of film thickness (one-dimensional shell effects). While the oscillation period, determined by subband crossings of the Fermi level, is the same for all properties, the phases can be different. Specifically, oscillations in the work function and surface energy(More)